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Abstract

We examine the radiative transfer in a hot moving plasma which
interacts with photons through the Compton processes. The Klein­
Nishina differential cross section is used in the formulation. By assuming
that the electron kinetic energy and the photon energy are sufficiently low
in comparison with the electron rest mass energy, the effects of the Compton
processes are taken into account in the formulation only as small correc­
tions over the Thomson scattering. Moment equations under the diffusion
approximation and radiative viscosity in an optically thick plasma are
derived in frequency-dependent forms. The coefficient of radiative viscos­
ity slightly increases in the subrelativistic regime in comparison with that
under the Thomson scattering. Equations governing the radiation hy­
drodynamics in the subrelativistic regime are briefly mentioned. The
radiation force and the radiation drag on plasma also undergo small changes
from those due to the Thomson scattering.

Key words: Compton scattering; High energy astrophysics; Radia­
tion hydrodynamics; Radiative transfer; Radiative viscosity.

1. Introduction

A number of observational facts and theoretical results are now accumulated on
high energetic astrophysical phenomena, e.g., X-ray bursters, supernova explosions,
astrophysical jets, nuclei of active galaxies, and the early epoch of the universe. Under
such circumstances, it becomes more and more necessary to study in detail the inter­
action processes between radiation field and matter in a hot plasma with a bulk motion.

Since Kompaneets (1957) the Comptonization of the isotropic radiation field in
a hot plasma has been extensively investigated [see Sunyaev and Titarchuk (1980) and
references therein]. If the change of energy in an individual scattering is small in .
comparison with the incident photon energy, the evolution of photon distribution is
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subject to the Kompaneets (1957) equation. Much attention, however, should be
paid to its generalization to the cases where the hot plasma has a bulk motion or where
the radiation field has anisotropy. The study of such cases is also important for the
derivation of hydrodynamical equations describing the hot moving plasma.

The equations of radiative transfer and radiation hydrodynamics are already
obtained by Hsieh and Spiegel (1976) in the case where photons and the plasma interact
through the Thomson scattering. The next requirement is to extend their work to the
case of a hot plasma where photons and the plasma interact through the Compton
processes. This problem is partially answered by Blandford and Payne (1981) and
Masaki (1981). Their work, however, seems to have some limitations in real applica­
tions. As for Blandford and Payne (1981), they introduced the diffusion approxima­
tion in their formulation without a careful distinction between the fluid frame and the
inertial frame. Furthermore, in their formulation the Klein-Nishina differential
cross section is not used. Finally, they did not generalize the work by Hsieh and
Spiegel (1976) until radiative viscosity and the equations of radiation hydrodynamics
under the Compton scattering are obtained. On the other hand, Masaki (1981) ex­
amined the radiative transfer in a hot plasma, taking into account the Compton
scattering. His formulation, however, is too general to be used for practical purposes.
Also he did not consider the bulk motion of the plasma and the radiation· hydro­
dynamics.

The purpose of this paper is thus to complement their works on the above-men­
tioned points. Like Blandford and Payne (1981), however, the effects of energy
change, Doppler frequency shift, and aberration are taken into account in the formula­
tiononly as small corrections to the Thomson scattering.

In the next section, we derive the transfer equation of photons, taking into ac­
count the Klein-Nishina differential cross section for the Compton scattering. In
section 3, frequency-dependent moment equations of the radiative transfer are pres­
ented under the diffusion approximation. In section 4, radiative viscosity in the
Thomson scattering (Masaki 1971) is generalized to the case of the Compton scattering.
Frequency-integrated moment equations of photons and equations for a hot moving
plasma are summarized in section 5. The final section is devoted to discussions.

2. Collision Integrals and Transfer Equations

In this section we derive the photon's transfer equation expressed in the frame
comoving with the fluid (fluid frame). To do so, however, the collision terms are
first described in the frame where the electron interacting with photons is at rest (electron
rest frame). In the next section, the moments of the transfer equation are taken in
the inertial frame. In this paper we distinguish definitely these three frames. In
what follows, a subscript 0, a bar, and no mark represent respectively quantities mea­
sured in the electron rest frame, those in the fluid frame, and those in the inertial frame.
Throughout this paper, we shall work in units where c=h=k=l; c, h, and k being
respectively the light speed, the Planck constant, and the Boltzmann constant.

It is convenient to start from the transfer equation which is written in the form
invariant to the Lorentz transformation (Lindquist 1966; Lifshitz and Pitaevskii 1981):
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(1)

where the bars have been attached to some quantities in order to emphasize that we
are interested here in the equation expressed in the fluid frame. Here kl'lj I' is the direc­
tional derivative along the photon trajectory in the four-dimensional phase space, kl'
being a component of the photon's four-momentum, i.e., kl'=li(I, I). li is the fre­
quency of the photon and I is the unit vector in the photon's direction of motion. In
this paper, the Greek suffixes take the values 0, 1,2, and 3, whereas the Latin suffixes
take the values 1,2, and 3. The quantity n(li, I) represents the invariant occupation
number of photons. The term S(fi, I; e, P) represents the rate of collisions between
a photon with frequency fi and momentum fil and an electron with energy e and mo­
mentum P. Ie is the invariant electron distribution function in the phase space and eo
is the electron energy in its rest frame.

The invariant collision integral S may be written in a simpler form in the frame
where the electron under consideration (e and P) is at rest. In that frame the expres­
sion for S is (Hsieh and Spiegel 1976; Blandford and Payne 1981)

S(fi, I; e, P)=S(lio, 10 ; e, P)

= lio[1+n(lio, 10)]~dtJo' d~o a(lio', lo'~lio, 10)( ~o:r~:' n(lio', 10') (2)

-lion(lio, 10) ~dtJo'[l +n(lio', 10')] d~o' a(lio, lo~lio', 10') •

Here the differential cross section dajdD0 of the scattering is given by the Klein-Nishina
formula:

(3)

where aT is the total cross section of the Thomson scattering. The frequency change
of the photon from lio' to lio due to scattering is given by the Compton formula:

l+~(l-l ·l')me 0 0

(4)

where 10 '/0' is the cosine of the scattering angle in the electron rest frame and me is the
electron rest mass.

In equation (2), the term (lio'jlJoYdlJo'jdlJo in the first integrand comes from the
fact that higher frequency has larger phase space. The factors (1 +n) represent the
induced enhancement of scattering due to the presence of photons in the final state.
Blandford and Payne (1981) neglected the induced terms from the beginning.

Finally the transformation relations between (fi, I) and (lJo, 10) are necessary in order
to close the description of the transfer equation. These Lorentz transformations are
(e.g., Hsieh and Spiege11976)
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(5a)

(5b)D [- (r-1 - ) ]10=-;;; 1+ 72v'l-r V ,

where r=(l- V2)-1/2=FlmeV and V is the velocity of an individual electron in the
fluid frame (thermal velocity). It is easy to see that the transfer equation described
by the set of equations (1)-(5) is identical with that given by Sampson (1959) [see also
Masaki (1981)].

In this paper, we assume that the plasma is sufficiently subre1ativistic both in
thermal motion and in bulk motion. That is, in the following formulations, we keep
terms up to the linear ones with respect to Time and v, where T is the electron tem­
perature and v is the bulk velocity of plasma. The energy of the photon is also assumed
to be subrelativistic; the terms up to the first order in I.Ilme are retained. The medium
is assumed to be optically thick to the electron scattering. Double Compton scattering
and pair processes are neglected as well as emission and absorption.

Under the above approximations, we substitute equations (3) and (4) into equa­
tion (2) to yield

s= 1~n' 1.I00'T[1 +n(l.Io, lo)]~ dDo'[l +(10 ·/o')2]n(1.I0+01.l0, 10') o~o (1,10+ 01,10)

- 1~n' VOO'Tn(1.I0' 10) ~dDo'( 1,10-;;0°1,10 Y[1+(l0·/o')2][1+n(1.I0-01.l0, 10')], (6)

where

(7)

(8)

The next step is to express the transfer equation in the fluid frame in an explicit
form. To do so, we first rewrite the collision term of the transfer equation by means
of the quantities in the fluid frame with the help of the Lorentz transformation (5) and
then average it over the thermal motion of electrons. The term n(l.Io+ol.lo, 10') in equa­
tion (6), for example, can be expressed by the quantities in the fluid frame, up to the
second order in V (i.e., up to the first order in Time), as

n(l.Io+ol.lo, 10')=n(D', i')

~n(D, i')+[O'-i). V+(V·i')(i'-i)· V+ o~0]v ;D n(D, i')

1 rei' 1-) V]2-2 0 (- 1-')+2 -' J,i OD2n II, •

Here the first equality shows the invariance of n. After the above procedures and
approximations, we can write the invariant collision integral as

s= 1~n' 1I00'T ~dDo'[1+(Io'Io')2]

X {n(D, i')+[(i'-i)· V+(V·i')(i'-i)· V]D ;D neD, i')
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+ ~e (1-i·i')[1+2n(iI, i)J[2ntil, i')+iI :iI n(iI, nJ}
(
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(9)

where J)o and (10 '10') should be expressed in terms of ii, i, i', and V with the help of
equation (5).

We assume that the electrons have isotropic velocity distribution in the fluid frame.
Furthermore, the temperature T of the electron gas is defined by averaging V over the
momentum space as (V2>=3T/me• From equations (1) and (9), after performing
the integration over the momentum space, we finally obtain the transfer equation in
the fluid frame:

k"o"n(iI, i)=(1-~ )neiiO"{ 1~1r ~d.Q'[1 +(i' i')2]n(ii, n-n(ii, i)]
+ ~ 1~1r neiiO"T~d.Q'[(i.i'Y+(i·i')]n(iI, i')

+;:: 1~1r neilO"T~d.Q'[2(i'i')3_3(i· i')2-2(i· i')+ l]n(iI, i')

+ 1~1r neilO"T ~d.Q'[l+(i' i')2](1-i· i')

x _l_[L ~il4~ +_1_ ~il4+2n(iI i)~ii2Jn(iI i') (10)
me ii2 oii ail ii2 ail 'ail "

where ne is the electron number density given by integration ofJ.(P) over the momentum
space. Due to the assumption of the isotropic electron distribution, the odd terms of
V vanish automatically after averaging over V. Thus equation (10) is valid up to
the order of va.

The factor (1-2i1/me) in the first term on the right-hand side of equation (10)
originates from the Klein-Nishina reduction, where the total cross section of scattering
decreases as the energy of the incident photon increases (e.g., Heitler 1954). The
term of the second integral comes from the fact that in the Compton scattering the
probability distribution of the scattering direction changes from that of the Thomson
scattering. The term of the third integral is a small correction expressing the effect
of the velocity dispersion of electrons. These terms of the second and the third in­
tegrals, as well as the first term, vanish when the photon distribution is isotropic. The
term of the last integral describes the evolution of the photon distribution function
due to repeated Compton scattering. In fact, in the limit of the isotropic 11, equation
(10) is reduced just to the Kompaneets (1957) equation.

3. Frequency-Dependent Moment Equations

The transfer equation (10) is too complicated to be applied to many practical
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problems. Hence, as is done in many cases, we take moments of the equation. To
close the moment equations, we adopt here the diffusion approximation in the fluid
frame:

n(i~, 1)=fz(v)+31·J(v) , (11)

which is rough but still useful as the first approximation in many cases. Here fz and 1
are the zeroth and first moments of photon's occupation number, and are defined re­
spectively as

1 r - -
fz(v)=~JdQn(v, l) ,

p(v)= 4~ ~d.Q1in(v,1) .

Higher moments are defined similarly as

piJ(V)= 4~ ~d.Qfi1Jn(v, 1) :

ijiJk(V)= ;7r ~d.Q[ilJlkn(v, 1) ,

(12a)

(l2b)

(12c)

(12d)

which will appear later.
Although Blandford and Payne (1981) adopted the diffusion approximation in the

inertial frame, it should be done in the fluid frame by this approach (Hsieh and Spiegel
1976).

Substituting equation (11) into equation (10) and performing the integrations in
equation (10), we find

.(13)

This is the transfer equation in the fluid frame under the diffusion approximation.
The factor (1-14v/5me+2T/5me) in the first term of equation (13) is different from
(1-2v/me) in equation (10), for the terms of the second and third integrals in equation
(10) have some contributions. The terms in large closed brackets come from the last
integral in equation (10), which represents the effect of Comptonization. Taking the
moments of equation (13), we can easily have the moment equations in the fluid frame.
For practical purposes, however, moment equations in the inertial frame are more
useful. Hence we shall direct our attention to them in the following.

The Lorentz transformation between the photon'S four momentum v(l, 1) in the
fluid frame and Ii (1 , ~) in the inertial frame are similar to those given by equation (5).
Since the bulk velocity v of the plasma is assumed subrelativistic, the Doppler effect
and aberration become
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~=lJ(l-v·i) ,

i=l-v+(v '/)/.
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(14a)

(14b)

With the help of equation (14) and n(~, i)=n(lJ, I), we can derive the transformation
rules among the moments of the photon's occupation number:

o 0
ii(~)=n(lJ)-(v ./)lJa;n(lJ)+2v· l(lJ)+lJa; [v .l(lJ)] , (15)

Ji(~)= P(lJ)-(v ./)lJ4-P(lJ)-vin(lJ)+3vjpij(lJ)+lJ4-VjVij(lJ) , ~16)VlJ vlJ .

P-ij(iI) pij(lJ)_(v '/)lJ~pij(lJ)-viP(lJ)-vjP(lJ)
OlJ .

+4vkqijk(lJ)+lJ :lJ Vkqijk(lJ) . (17)

Here the moments in the inertial frame, n(lJ), P(lJ), pij(lJ), and qiik(lJ), are defined by
equations similar to equation (12). It is noted that equations (15)-(17) are general
in the sense that the diffusion approximation is not used.

Substitution of equations (14)-(16) into equation (13) and integration over the
solid angle ultimately give the moment equations in the inertial frame. The first two
moments are

where nand fi are functions only of lJ. The zeroth moment n(lJ) should not be con­
fused with n(lJ, I). We note that the derivatives, %t and 17, are operated in the inertial
frame with fixed lJ and I.

The moment equations (18) and (19) are to be closed under the diffusion approxi­
mation (11). Actually, in the case of the diffusion approximation, the frequency­
dependent stress tensor pii(lJ) on the left-hand side of equation (19) is expressed by
means of n(lJ) andp(lJ) as

"() oij 1['f' 'f' 0 ('f') 0 ( 'f')Jp" lJ =-n+- V· 3+V' '-lJ- v' '-lJ- v3 •3 5 OlJ OlJ

- 1
2
5 Oi{v k jk-lJ ~ (v k jk)] . (20)

Here we have used the transformation rules (15) and (16).
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Equations (18)-(20) are the closed set of the frequency-dependent moment equa­
tions in the inertial frame under the diffusion approximation. If we neglect the terms
of induced scattering and other higher-order ones which are small, equations (18)­
(20) are reduced to Blandford and Payne's (1981) equations (15) and (16). The term
3v -I in equation (18) is dropped in their equation (15) due to misprint. However,
terms proportional to v in equation (20) are absent in their results, since they did
not distinguish clearly between the fluid frame and the inertial frame. These terms
arise from the Lorentz transformation (Hsieh and Spiegel 1976).

When equations (18)-(20) are integrated over frequencies, the equations to be
used for radiation hydrodynamics are obtained. Before proceeding in such a direc­
tion, we shall discuss radiative viscosity in the next section.

4. Radiative Viscosity

In the previous section we have used the diffusion approximation, pij(D)= oijii(D)/3
or equation (11), in order to obtain the frequency-dependent moment equations.
Under this approximation, however, an important property of interaction between
the photon and the fluid, i.e., radiative viscosity, has been dropped from the consid­
eration from the beginning. In this section we shall examine how the radiation
stress tensor pij(D) is modified in the next order of approximation from the form given
by the diffusion approximation. For simplicity, we shall restrict our attention only
to the case where the medium is sufficiently thick to electron scattering.

4.1. Frequency-Dependent Form of Radiative Viscosity

The left-hand side of the transfer equation (10) is written in the inertial frame as

(21)

where n(l.i, 1) is the occupation number of the photon in the inertial frame. From the
invariant nature of the photon's occupation number and from the Lorentz transforma­
tions (14), we can rewrite expression (21) as

D[(l+v.i) ;t +O+v)'Ii]· neD, i) ,
",I

where the differentiations, a/at and Ii, are operated with fixed l.i and I.
Since

(22)

~I =~l -i'~D~+[-~+i(i'~)J.-L, (23a)
at ",I at ;;,i at aD at at 01

the terms in the brackets of expression (22) can be rewritten by the quantities in the
fluid frame as



No.2] Radiation Hydrodynamics ina Plasma

[( - 0 - ] [- OV - ] al+v'I)-+(l+v)'J7 _- 1'-+I(I'l7)v D-_
at ;;,1 ot OJ;

{ OV - -[- OV -(- 17\ ]} 0+ ---(l·J7)v+l 1'-+II',)v --ot . ot 01 .
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(24)

Substitution of expressions (22) and (24) into the left-hand side of equation (10) gives
finally the transfer equation expressed explicitly by the quantities in the fluid frame.
This transfer equation in the fluid frame is solved in the remaining of this section.

As mentioned before, we shall restrict our attention to the case where the medium
is sufficiently thick to electron scattering. Thus n(D, I) can be expanded in the inverse
powers of neaT as

(25)

Note that the subscript 0 on n should not be confused with that used to denote quantities
in the electron rest frame.

It is reasonable to assume that the photon occupation number no(D, I) is a local
quantity and independent of the direction, for there is no particular preferred direction
in the medium when the optical depth is infinite. That is,

no(D, I; t, r)=no[D; T(t, r)] . (26)

In this case, the expansion of equation (10) by the parameter 11neaT shows that as the
relation in the lowest order of approximation we have an equation to be satisfied by
no: the time independent Kompaneets (1957) equation. Without losing generality,
it is expressed as

(27)

Proceeding to the next order of approximation, we collect terms of the order of
(neaT)O in equation (10) with the help of equations (24) and (25). After performing
integrations over the direction, we have

3 (1 2D 6T )-.-...() 3 ( 2D 4T )-'-'-k' 'k( )+- ----+2 Z'Z'b" D +- -+--2 l'l3l ijl" D
4 me me 4 me me

dno ( )
-~' ~

where the operators, dldt and 2, are defined as

d [( - 0 - ] [" ov - - ] 0-= l+v'l)-+(l+v)'J7 .- 1'-+I(I'l7)v D-_ ,
dt ot ;;,1 ot OJ;

(29)
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(30)

and ii1(D),hi(D), jj1ii(D), and iNik(D) are respectively the zeroth, first, second,and third
moments of n1(D, 1) and defined like equation (12).

Taking the zeroth and the second moments of equation (28) and combining them,
we finally have after some manipulations

(31)

where

1J(D)= 2 [1+ 2D _ 2T +l-2"+~~(D2no)J(Dd~o)
27neaT me 3me 9 9me dl.i dl.i

= - 27;eaT {l+ 9~e [~2+17x+(34x-18x2)no-18x2no2] }(D~~O) , (32)

In deriving the second equality of equation (32), we have used equation (27).
In the case of the Thomson scattering in a cold plasma, the terms in the brackets

in the first line of equation (32) are unity. That is, the second to the fifth terms
in the brackets represent corrections due to the Compton scattering in an electron
gas with a velocity dispersion. The correction factor 2D/me is due to the fact that the
effective cross section of scattering decreases with increasing energy by the Klein­
Nishina formula. The third term represents the effects of the presence of the velocity
dispersion in the hot plasma. The last two terms among the four corrections can
be regarded as representing the effects of the Comptonization processes.

4.2 Frequency-Integrated Form ofRadiative Viscosity

Integration of equation (32) over the frequency after multiplying equation (32)
by 8rrD3 gives the coefficient of radiative viscosity 1J. Performing the integration by
parts, we have

(34)

where

is the radiation energy density in the fluid frame and

<D2)Eo=~dD8rrD5no/Eo

(35)

(36)

are the energy-weighted mean values of some quantities. A general form of radiative
viscosity is given by Masaki (1981).
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When the solution no(iI) of the Kompaneets (1957) equation (27) is known, we
can have the explicit form of radiative viscosity from equation (32) or (34).

4.3. An Example

A typical example is the case where the Planck distribution is taken as no{iI).
That is,

(37)

Of course, the Planck distribution satisfies the Kompaneets (1957) equation (27).
The coefficient of radiative viscosity (34) becomes

(38)

Here Ep(=aT4) is the radiation energy density for the Planck distribution and C is the
numerical factor

(39)

Thus within our approximations, radiative viscosity increases slightly in comparison
with that of the Thomson scattering in a cold plasma (Masaki 1971) by a factor (1+
CTlm.), as long as the medium is optically thick to electron scattering.

5. Equations for Radiation and Matter

Returning to the diffusion approximation, we shall now summarize in the inertial
frame the frequency-integrated forms of the photon's moment equations and the equa­
tions governing the behavior of matter.

Integrating equations (18) and (19) over the frequency after multiplying them by
87!"1}, we have equations for radiation:

aE +" 'F=-(l 28<Ii)F 2T) .Fat Y Sm. + Sm. n.aTV

+ n;;:T (4T-<Ii)E-<lin)E)E+;;;T 6
5

<lif)FF, (40)
• •

where

E==. ~dIi87!"1i3n(li) , (42a)
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(42b)

(42c)

Here we have introduced the energy-weighted and the flux-weighted mean quantities
defined, for example, as

(A)E= ~dli81!"li3A(li)n(li)/E,

(A)F= ~dli81!"li3A(li)f(li)!F.

(43a)

(43b)

Integrating equation (20), we can express the radiation tensor pii in equation (41) in
terms of E and pi as

P ·· aii
E 'F' 'F' 2 l>"" Fk>'= -3- +v> '+v' >- 3U>'vk . (44)

The terms proportional to (li)E or (li)F in the first parentheses on the right-hand
side of equation (40) and in the first and the second parentheses on the right-hand
side of equation (41) come mainly from the Klein-Nishina reduction of the total cross
section and partially from the fact that the probability distribution of scattering angle
changes from that of the Thomson scattering. The terms proportional to T in the
above-mentioned parentheses represent the effects of velocity dispersion of electrons
in the hot plasma, as already mentioned. The second and the third terms on the right­
hand side of equation (40) represent the Comptonization effect. That is, if the electron
temperature is higher than the photon temperature, the energy flows into the photon
gas from the electron gas, and vice versa. The term (4T- (li)E- (lin)E) vanishes when
the radiation field is Planckian. Similarly, the last term on the right-hand side of
equation (41) shows the momentum exchange between the photon gas and the elec­
tron gas through Comptonization.

Eliminating Fi from equations (40) and (41), we obtain the energy equation for
the photon gas (cf. Blandford and Payne 1981) as

oE [14 76 8T 4 14 (0 2) ]
~+ 1--3 -(li)E+-lS(li)F--S-+-S-(lin)F+-S- ~(lin) v'17E
ut me Ine me me me uli F

=OiXOjpij

- 43 E17[1--2
7

(li)E+ ;6 (li)F- S8T +-5
4

(lin)F+ 5
14 (~ (li 2n)) Jv

me _'me me me me Uli F

+ ne(}T (4T-(li)E-(lin)E)E
me

+ ne(}T ~(lif)F(__1_0jpij+.i.EVi), (45)
me 5 ne(}T 3

where Xis the coefficient of radiative diffusion of the photon gas and
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(46)

To complete the system of equations for radiation hydrodynamics, we need equa­
tions for matter, which are derived from the conservation of the energy-momentum
tensor for the sum of radiation and matter (Hsieh and Spiegel 1976). Within the
present approximations, we have the equation of motion:

and the energy equation:

p( ;t +v.17)e+P17 o v

=_(aE +17.F)+v(aF +aopiJ.O)at at J

= - neaT (4T-<v)E-<vn)E)E- neaT 6
5

<vj)F.F
me me

- ;:'T [4T+6<v)F-2<vn)F-7( ;v (v 2n»)J; v·F . (48)

Here p is the density, P is the pressure, e is the internal energy of the matter, and ¢ is
the potential of the external force acting on the matter.

In conclusion, we briefly mention several notable modifications of the equations
for matter due to the presence of Compton processes. The first term on the right­
hand side of equation (47) represents the radiation force. The coefficient of this force,
the terms in the brackets, decreases with increase of the photon energy. If we assume
that the first moment, j(v), is proportional to the gradient of the zeroth moment,
17n(v), and that the radiation field is Planckian with temperature T as done by
Sampson (1959), then this radiation force is reduced to (1-4rr 2Tj3me)neaTFi '" (1­
13.2Tjme)neaTFi. This is in good agreement with the result obtained by Sampson
(1959). We note that in the same approximation X becomes (I +4rr2Tj3me)jneaT.
The radiation drag, the second term on the right-hand side of equation (47), decreases
with increase of the photon energy. When the radiation field is Planckian, it is reduced
to ",(I-13.0Tjme)4neaTEvij3. The first term on the right-hand side of equation (48)
describes the energy exchange between the photon gas and the matter and vanishes
for the Planckian radiation field with temperature T. Finally, the third term on the
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right-hand side of equation (48) represents the work done between radiation and
matter. The flux means in this term can be evaluated like the case of the radiation
force.

Equations (40), (41), (44), (47), and (48), with the equation of continuity, are
thus the basic equations for radiation hydrodynamics obtained in this paper.

6. Discussion

We have examined the radiative transfer and the radiation hydrodynamics in a
hot moving plasma under the Compton scattering. Our results are valid only to the
first order in hvfmec2

, kTlmec2
, and vic. With the increase of photon energy, the total

cross section of scattering decreases by the Klein-Nishina formula. In addition, at
the scattering there occurs the energy and momentum exchange between the electron
and the photon. The amounts of the exchanged energy and momentum depend upon
the scattering direction. Furthermore, the fact that the electrons have a velocity
dispersion should be taken into consideration. As a result, the radiative viscosity,
the radiative diffusivity, the radiation force, the radiation drag, etc., suffer from com­
plicated changes in comparison with the case of the Thomson scattering in the cold
plasma.

In this paper radiative viscosity has been examined only in a particular case where
the medium is sufficiently thick to electron scattering and hence both the electron tem­
perature and photon temperature are the same. This, however, will not be always
the case in practical situations. For instance, in the inner part of accretion disk
around a black hole, a high temperature gas may interact with soft photons under an
optically thin configuration (e.g., Shapiro et al. 1976). In such a case, the mean mo­
mentum exchange at a collision between a photon and an electron will be large be­
cause of a large temperature difference between the photon gas and the electron gas.
On the other hand, the photon number is small in such disks, since the temperature
of the soft photon gas is low. The above two conditions act in opposite directions in
the determination of the total amount of the momentum exchange between the photon
gas and the electron gas in unit volume. Hence a careful treatment is required to know
the magnitude of radiative viscosity in such a multitemperature optically-thin gas.

The examination of the Compton scattering radiation hydrodynamics in the trans­
relativistic regime (hv '" mec2 or kT", mec2

), which remains in this paper as future work,
will be important as well as of interest to practical applications, since the difference
between the Compton scattering and the Thomson scattering becomes prominent in
such a high energy regime. However, its study in the extreme relativistic regime
will be unimportant, because the cross section of the photon-electron interaction be­
comes sufficiently small in such a regime and other processes such as double Compton
scattering process and a e+e- pair production may dominate the Compton processes.
The cross section of the double (radiative) Compton scattering is of the order of a=11
137 in comparison with that of the Thomson scattering. It is, however, important
for kT';20.1mec2 (Weaver 1976) because of the Klein-Nishina reduction of the single
Compton scattering. Furthermore, the double Compton scattering is of importance
as a photon source (LightmanI981; Thorne 1981). Pair production becomes domi-
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nant at temperatures somewhat above mec2
• Formulation of equations for radiative

transfer and for radiation hydrodynamics including the above processes is left open
for the future.
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