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Abstract

Disk accretion of ideal gas with angular momentum is examined
under a full relativistic. treatment. The rigorous equations of state are
used in order to deal properly with the relativistic flow. There appear
multiple critical points in some ranges of parameters similar to the poly­
tropic flow. A transition through standing shocks is also examined in
relation to the accretion onto a compact star. It is found that for the same
parameters and· boundary conditions the positions of standing shocks
multiply like critical points due to the rotation and relativistic effects. An
application to low-mass binary X-ray sources is briefly discussed. In
these objects, the very cold transonic flow inside the inner edge of the accre­
tion disk may form the hot atmosphere around a neutron star via shocks.

Key words: Accretion; Equations of state; Standing shock waves;
Transonic flows; X-ray binaries.

1. Introduction

Recent observational developments around neutron stars and black holes require
a deeper study of an accretion of gas with angular momentum onto such compact
objects. Although there are a number of works on accretion disk models, it has been
assumed in almost all cases a Keplerian disk where the radial drift velocity is neglected
and the gravitational attraction of a central object is balanced by rotation (Shakura
and Sunyaev 1973; Novikov and Thorne 1973). However, in the region between the
inner edge of an accretion disk and the surface of the central object (figure 1b), an
initially subsonic flow becomes supersonic through a critical point, as well as in the
case where the infalling gas is originally unbound and has a small angular momentum
(figure la). An accretion flow through a sonic point may be also established inside
the cusp of a geometrically thick disk-an accretion torus (figure lc) (Kozlowsky et
al. 1978; Rees et al. 1982). In this paper, I generally examine such a transonic flow
onto compact objects in the framework of general relativity.

To date, accretion and wind of gas with angular momentum have been investigated
in the Newtonian case (Limber 1967; Henriksen and Heaton 1975) and in the relativistic
case (Liang and Thompson 1980; Abramowicz and Zurek 1981; Loska 1982;
Muchotrzeb 1983; Matsumoto et al. 1984; Lu 1985). When the accreting gas has
angular momentum, center-type critical points appear in addition. to usual saddle-
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Fig. 1. Schematic pictures of several situationswhere a transonic disk accretion takes place.
(a) The case where the accreting gas is unbound and initially has small angular mo­
mentum. The flow which becomes transonic at Yc reaches the surface y* of a central
object with or without shocks. (b) The case where a geometrically thin viscous ac­
cretion disk exists and the radius y* is smaller than the marginally stable radius y ms.

In this case, a transonic flow is established in the region between ymB and y*. (c) The
case where a geometrically thick disk-a torus-is formed. The gas overflowing the
cusp at ycusp accretes transonically to a central object.

type critical points in spherical flows. In the relativistic case, furthermore, another
saddle-type point can exist arid the bimodal behavior of accretion due to the jump
between the inner critical point and the outer one was suggested (Abramowicz and
Zurek 1981; Abramowicz et al. 1986). If the viscous process is relevant, the charac­
teristic of the flow becomes more complicated (Matsumoto et al. 1984).

The present study is different from the previous investigations in three major
aspects. First, the nature of transonic flows of rotating gas has been investigated
in wide ranges of parameters in the present analysis, while the attentions were focused
on several special cases in the previous studies. The second distinct point here is the
adoption of the rigorous equations of state. The polytropic relation was assumed
so far for simplicity. In an accretion onto a relativistic object, however, the relevant
temperature range is very wide from the nonrelativistic regime to the relativistic re­
gime. Hence the assumption of constant polytropic index is inadequate. Instead,
we must use the equations of state for the relativistic Maxwell-Boltzmann gas (Fukue
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1986). Finally, standing shock waves in transonic accreting flows are also considered
in this work. A transition of a supersonically accreting flow to a subsonic one through
standing shocks is important in the disk accretion onto a compact star which has a
rigid surface as well as onto a black hole.

In the next section, the basic equations governing a transonic flow are presented.
Critical points of the system of the basic equations are obtained in section 3, whereas
in section 4 critical solutions are classified on the parameter plane. Standing shocks
are examined in section 5. Applications of the present flow to low-mass binary x­
ray sources are made in section 6. The final section is devoted to conclusions. For
convenience of the reader, the adiabatic sound speed and effective adiabatic index of
the relativistic Maxwell-Boltzmann gas are given in appendix 1. The transonic disk
accretion for the polytropic gas is summarized in appendix 2 in order to compare it
with the present flow.

2. Basic Equations

Let us consider a steady axisymmetric disk accretion onto a compact star in the
Schwarzschild space-time (figure 1). The flow is assumed to be one-dimensional in
the radial (r) direction. The accreting gas, which consists of electrons and protons,
is supposed to be adiabatic and inviscid. The magnetic field and self-gravity of the
gas are both neglected for simplicity. Throughout this paper, we set rg (the Schwarz­
schild radius)= I =c (the light speed), unless otherwise mentioned. The subscripts
e and p denote respectively electrons and protons.

Under these assumptions, the conservation of number density becomes

Anur=constant , ( 1 )

where A is the cross-sectional area of the flow and assumed to be proportional to r N

(to be explained later in this section). The total number density n is related to the
proton number density np by n=ne+np =2np • The radial component ur of the four
velocity is expressed as

(2)

where r is the Lorentz factor r=(I-vr2-v\02)-1/2=rvh; rv=(1-v2)-1/2 and h=
(1-v\02)-1I2. The physical radial and azimuthal velocities measured by the static
observer are respectively vr=(-YrrjYoo)1/2ifjuO and v\O=(-y\O\OjYoO)1/2U\OjlfJ, while the
physical three-velocity measured by the corotating observer is V=hVr (see Lu 1985).
Finally, Yi/S are metric tensors; e.g., Yoo=(l-ljr). .

The relativistic Euler equation is

'du
r

1 ( 3) (1 ) 1 dpur_+-- r-- u\Ou\O=- l--+urur ---
dr 2r2 2 r c+p dr '

(3)

where u\O is the azimuthal component of the four velocity, and c and p are the total
internal energy density and the total pressure, respectively. The equation of angular
momentum conservation is
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(4 )

(5)

By use of equation (1), the energy equation is written as

de _ e+p dnp=O
dr np dr .

On the other hand, the total energy conservation along the flow stream line is given
by an integrated form:

A(e+p)uou'"=constant,

where uo=r(goo)l/2.
These equations are supplemented by equations of state:

p=nkT=2npkT,

e=np!p+ne!e=np(/p+.!e) ,

(6)

(7)

(8)

where k is the Boltzmann constant, T the common temperature ofelectrons and pro­
tons, and/a's function of T (appendix 1).

The basic equations (1), (3)-(5), (7), and (8) determine the dynamical properties
of the disk flow. It should be noted that the hydrostatic balance in the vertical direc­
tion of the disk is not treated in this paper for simplicity. Instead, it is assumed
Aocr N

, N being constant. Furthermore, N will be set to 2, since the qualitative prop­
erties are not much dependent on the values of N.

Dividing the total energy conservation (6) by the baryon number density conserva­
tion (1), we have the relativistic Bernoulli equation:

(9)

where E is the specific energy of the flow measured at infinity and read as Ec2 in a
dimensional form. Here equations of state (7) and (8) are used.

With the help of equation (5), the equation of angular momentum conservation
(4) is easily integrated to give

(10)

From the Bernoulli equation (9), this equation (10) ultimately becomes

r2u'l'
-=constant=L (11)
Uo '

where L is the specific angular momentum of the gas measured at infinity. At this
stage, rL is written as h=(1-gooVjr2)-1/2.

Finally, the basic equations are reduced to the wind equations such as
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(13)

(14)

is the square of the adiabatic sound speed (appendix 1) and the prime denotes the
differentiation with respect to T. Equations (12) and (13) are dependent on each other
through the Bernoulli equation (9).

In the polytropic flow, an apparently similar equation [e.g., equation (12)] is ob­
tained (appendix 2). However, the sound speed Cs differs in each case. In the present
case adopting the rigorous equations of state, the adiabatic index is no longer the
parameter but a function of T as well as CS'

In what follows, equation (13) is used as a basic wind equation, T being the vari­
able. Thus, the basic equations in the final form to be solved are equations (1), (7)­
(9), (11), and (13). In addition, the parameters to be specified are the mass accretion
rate, the geometrical parameter N, the specific energy E, and the specific angular
momentum L.

3. Critical Points and Their Topology

As is easily seen, equation (13) [or equation (12)] has critical points where both
the denominator and numerator vanish simultaneously. These critical conditions
are written as

[1/(2r2Uoo)]-{[1-(3/2r)](L2/r3)j(l-UooL2/r2)} I
(N/r)+(1/2r2uoo) e'

(15)

where the subscript c denotes the quantities at critical points.
This equation (15), the Bernoulli equation (9), and the sound speed (14) evaluated

at critical points yield the relations among the quantities at critical points.· The
relations among L, E, and re (the location of critical points) are shown in figure 2.
The parameter N is fixed as N = 2.

It is emphasized that there appear multiple (2 or 3) critical points for some range
of values of Land E, similar to the polytropic case examined previously (e.g., Liang
and Thompson 1980; Lu 1985). The relations among L, E, and r e , however, are
quantitatively different from those of the polytropic case (appendix 2). For example,
there exist three critical points for 1<E<1.00871 in the present case adopting the
rigorous equations of state, whereas in the polytropic case with index T=4/3 there
exist three for 1<E<1.0215 (Lu 1985).

The parameter values allowed are restricted by several physical conditions such
that h 2 must be positive at critical points or v2 must be also positive there. The
former condition is written as V<r2/Uoole, whereas the latter, v2Ie>0, becomes
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Fig. 2. The relations among L, E, and re• The abscissa is re and the ordinate is V. The
number attached on each curve is the value of E (=0.99, 1.0, 1.005, 1.1-1.5). The
parameter is N =2. It is noted that in some range of E there are multiple solutions re
for a fixed L. Critical points are of the saddle type (denoted by solid curves) or of the
center type (dashed curves). For the steady transonic flow, the values of parameters
in the hatched region are forbidden because v21e<0 there.

(16)

which is the stronger condition than the former and also shown in figure 2. That is,
the values of the parameters in the hatched region in figure 2 are forbidden because
v2le<O there.

Also noted is the case ofE<l. Because of the relativistic effect, the accretion
from a bound orbit (E<l) is possible as described in figure Ib or lc and will be dis­
cussed in section 6.

Linear expansions of the wind equation around critical points tell their topology.
When there are three critical points, an intermediate point is not of spiral type as
suggested previously (Lu 1985) but always of the center type (denoted by dashed
curves in figure 2) as long as the adiabatic flow is relevant. The intermediate point
becomes of the spiral type or of the nodal type when the viscous effect is taken into
account (Matsumoto et al. 1984). On the other hand, inner and outer points are
both saddles (denoted by solid curves in figure 2).

The reason for multiplicity is due to the existence of angular momentum and to
the relativistic effect. When there are three critical points, an intermediate point of
the center type is caused by the angular momentum of the gas like in the Newtonian
case (Henriksen and Heaton 1975). On the other hand, the origin of the inner critical
point is purely the relativistic effect (Liang and Thompson 1980).

4. Critical Solutions and Their Classification

As shown in the previous sections, when the geometrical parameter N, the specific
energy of the flow (specific enthalpy at infinity for accretion) E, and the specific angular
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momentum L are given, we can obtain the positions of critical points (figure 2) and
further calculate critical solutions passing through critical points of the saddle type.
In this section, I shall try to classify the critical solutions after presenting several
typical solutions. For brevity, the geometrical parameter N is fixed as N=2.

4.1. Critical Solutions
Typical critical solutions are shown in figure 3 for parameters of E= 1.005 and

L=1.500, 1.522, and 1.600.
In figure 3, the Mach number M, the flow velocity v, the sound speed Cg , the flow

temperature T, and the effective adiabatic index r are shown as functions of r. Thick
curves represent accreting solutions, while thin curves show wind solutions.

In figure 3a (L= 1.500), the critical solutions which extend from infinity to the
surface of the central object pass through the outer critical point (rc=27.67), although
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Fig. 3. See the caption on the next page.
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(c)
Fig. 3. The Mach number M, the flow velocity v, the sound speed cs, the flow temperature

T, and the effective adiabatic index r of typical critical solutions. The parameters
are fixed as N=2, £=1.005, and L=1.5 (a), 1.522 (b), and 1.6 (c). Thick curves
represent accreting solutions, while thin ones represent wind solutions. The critical
solution passes through the outer critical point in (a), whereas it passes through the
inner point in (c).

there exists an inner critical point of the saddle type at r c=3.55. On the other hand,
they pass through the inner one (rc=2.809) in figure 3c (L=1.600), where the outer
critical point is located at rc=24.l7. For special values of parameters, e.g., L=
1.522 in the case of figure 3b, they pass through both inner and outer critical points
of the saddle type (rc=3.3l and 27.05 in this case). However, such a situation where
particular values of parameters are selected will not be realized in actual flows.

The jump between the flow of the figure 3a type and that of the 3c type will take
place through the 3b type as pointed out by Abramowicz et al. (1986) (see also sub­
section 4.2).

4.2. Classification
It is useful to classify solutions on the L-E parameter plane (figure 4). By means

of the number of critical points appeared on the solution plane, the L-E plane is roughly
divided into three regions:

(i) The region where there exist no critical solutions or no physical solutions
which extend from infinity to the center (hatched region in figure 4). For the values of
parameters in the lower-left region of figure 4, there are no critical points and thereby
no critical solutions. On the other hand, in the rightward of the L-E plane, v2 at inner
critical points becomes negative (cf. figure 2), although there formally exist critical
points. In this region, the high angular momentum of the flow prevents the gas to
accrete steadily onto the central object (through inner critical points).

These two domains are merged at L=Lms=(27/8)1/2= 1.837 and E=Ems=(8/9)l/2
=0.9428. It should be noted that L ms is not 31

/
2 of a particle in the marginally stable

last orbit, because the gas pressure is here taken into account (see Kozlowsky et al.
1978). '
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Fig. 4. The classification diagram on the L-E parameter plane. The plane is divided into
three distinct regions via the number of critical points. The bifurcation points on
the boundary of each domain are (L, E, rc) = (1.4047, 1.0087, 6.7), (1.5151, Emb, 4.3),
(Lm " Ems, 3), and (Lmb, E mb, 2), where L ms =(27/8)1/Z, L mb=2, E ms =(8/9)l/Z, and
Emb=1. See the text for details.
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Fig. 5. The Mach numbers for several parameters in figure 4. From top-left to bottom­
right, parameters are (L, E) =(1.20, 1.04), (1.50,1.04), (1.20,1.005), (1.46,1.005),
(1.50,1.005), (1.52,1.005), (1.60,1.005), (1.67,1.005), (1.80, 1.005), (1.71,0.97),
and (1.80, 0.97).

(ii) The region where a single critical point appears (upper side of figure 3).
The leftward boundary between this single critical point domain and no critical point
one is E=Emb=1. The type of critical points in this domain is always the saddle
type. Critical solutions of the spherical Bondi (1952) type for small L smoothly transit
to the disk accretion type for large L.
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(iii) The region where multiple critical points appear (central triangle part in
figure 4). In this region, when E is smaller than unity (bound flow), there exist two
critical points, whereas there are three for E> 1 (unbound flow). In addition, above
the double line (i.e., higher E and/or higher L) a critical solution which extends from
infinity to the center passes through inner critical points, while it passes through outer
ones below the double line (i.e., lower E and/or lower L) for E> 1. The bifurcation
points surrounding this domain are (L, E, r c)=(1.4047, 1.0087,6.7), (1.5151, Emb, 4.3),
(Lms, Ems, 3), and (Lmb, Emb, 2), where Lmb =2.

The division of the L-E plane is qualitatively similar to that for the polytropic
case (appendix 2), but quantitatively different from it.

In figure 5, the Mach numbers of solutions in various domains in figure 4 are
shown as functions of r. Parameters are (L, E )=(1.20, 1.04), (1.50, 1.04), (1.20,
1.005), . (1.46, 1.005), (1.50, 1.005), (1.52, 1.0005), (1.60, 1.005), (1.67, 1.005), (1.80,
1.005), (1.71, 0.97), and (1.80,0.97) from top-left to bottom-right.

When we fix the parameter E at a value between 1.0087 and Emb, critical solutions
for small L pass through outer critical points of the saddle type [spherical Bondi (1952)
type accretion], while those for large L pass through inner points of the saddle type
(disk-type accretion), as demonstrated in earlier investigations for the polytropic flow
(Abramowicz and Zurek 1981; Abramowicz et al. 1986).

Similarly, when we fix the value of L between 1.4047 and Lmb, then critical solu­
tions pass through outer critical points for small E and inner ones for large E. Then,
it is "emphasized that the locations of critical points jump and the transonic solutions
change drastically, if the values ofparameters change so as to cross the double line in
figure 4. The bimodal behavior of transonic disk accretion of gas with angular
momentum is thus extended in a general case.

5. Standing Shocks

Through standing shock waves, supersonically accreting steady flows can transit
to subsonic ones which settle hydrostatically down the rigid surface of a central grav­
itating object. In the Newtonian case, such standing shocks associated with accretion
or wind have been extensively studied (McCrea 1956; Holzer and Axford 1970). On
the other hand, in the relativistic case discussed here, little has been done except for
the spherical case (Blumenthal and Mathews 1976). The transition through standing
shocks, however, is a serious problem in transonic (disk) accretion onto compact
objects such as a neutron star and even a black hole. In this section, standing shocks
are thus incorporated in the present transonic flow.

In the context of the present treatment under the spherical geometry, we cannot
deal properly with such a standing shock in disk accreting flows. This is because the
hydrostatic equilibrium in the vertical direction of the disk is not considered and
hence the vertical expansion just behind the shock will not be taken into account (see
Fukue 1983). Qualitative features, however, can be found under the limited treat­
ment here as described below.

In order to derive the jump conditions, we must use the relativistic Rankine­
Hugoniot relations (Thorne 1973). Considered here are shocks standing stationary
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at the same positions in accreting flows, so the shock frame (a local Lorentz frame)
coincides with the rest one. Moreover, it is unnecessary to consider the tangential
component of the flow in the jump conditions. I further assume that the thickness of
the flow does not change at the shock. Hence, the jump conditions become

(el+P1)u12+Pl = (e2+P2)u22+P2 '

(e1+Pl)r1U1=(e2+p2)r2U2,

(17a)

(17b)

(17c)

where I denotes the front side of the shock and 2 the back side. The four velocity u
and the Lorentz factor r should be read as u=rv and r=(I-v2)-1/2 in this section.

By adopting T and u as variables, equations (17a)-(17c) are reduced to

(fp+.fe+2kT)rll=(fp+.fe+2kT)rI2' (18a)

[2kT+(fp+fe+2kT)u2]/ull=[2kT+(fp+f.+2kT)u2]/uI2' (18b)

From these equations (18a) and (18b), we can calculate the postshock quantities from
the preshock quantities given.

5.1. Neutron Stars
Let us first consider standing shocks in the disk accretion onto a neutron star

which has a rigid surface. In this case, the subsonic flow inside the standing shock
must connect smoothly to the boundary conditions at the star surface.

A typical example is shown in figure 6, where parameters are fixed as E= 1.005
and L= 1.500 as in figure 3a. Hence, the outer critical point is located at r=27.67

log T

Fig. 6. The Mach number M of an example of solutions with standing shocks in the case
of accretion onto a neutron star. Parameters are (L, E)=(1.500, 1.005). The dotted
curve denotes the locus of the Mach number just behind the shock. Thin vertical
lines represent the positions of standing shocks for the conditions specified. The
shocks can stand at three distinct locations for the same parameters and boundary con­
ditions in this case.



320 J. Fukue [Vol. 39,

and the effective adiabatic index there is 1.445. The radius r* of the neutron star is
assumed to be 2rg and the temperature there is set as kTjmpc2=0.03 in this example.

In figure 6, the Mach number M is plotted as a function of r. The dotted curve
denotes the locus of M at the postshock position. The supersonic solution jumps
on this curve at the shock. The relevant parts of the solutions are denoted by thick
curves. It is found that, for the same parameters of the flow andfor the same boundary
conditions at the star surface, shocks can stand at three distinct positions in this case.
In the case of figure 6, the possible locations of standing shocks are '" 9, '" 5, and
",2.6.

This phenomenon may be associated with the multiplicity of critical points men­
tioned in section 3. Of these three locations of standing shocks, the outermost posi­
tion is that of the usual type formed in the spherical flow. The intermediate position
appears due to the effect of rotation (this is easily understood when we consider the
Newtonian limit). Finally, the innermost position is related to the relativistic effect.

Which location of these shock positions does nature favor? Undoubtedly, a
more detailed analysis is necessary, including the stability of standing shock waves.
This is out of the scope of this paper.

5.2. Black Holes
In usual situations, it seems to be difficult to imagine standing shocks in a transonic

accretion onto a black hole which has no rigid surface. In the present case, however,
the multiplicity of critical points enables standing shocks in such a transonic flow
onto (into?) a black hole.

An example is displayed in figure 7, where parameters are E=1.005 and L=1.513,
and therefore rc=27.3 and r c =1.445.

In figure 7, the dotted curve also denotes the locus of the Mach number just behind
the shock. The supersonically accreting flow which has passed through the outer
critical point of the saddle type becomes subsonic at the standing shock. Then it is

.321
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Fig. 7. Same as figure 6 but for a black hole. (L, £)=(1.513,1.005). In addition to
the transonic solution without a shock, there exist two with standing shocks at dif­
ferent radii.
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again accelerated to be supersonic at the inner critical point and eventually falls into
the hole. In the case of figure 7, it is possible for standing shocks to exist at two
different places, r=5.6 and 10. This is also due to reasons similar to those discussed
in the previous subsection. In addition, it is of course possible to have a transonic
solution without a shock.

I notice that the standing shock which appeared in the accretion onto a black
hole for the present case is different from that discussed by Chang and Ostriker (1985)
in the spherical accretion where the nonadiabatic effect is included.

6. An Application

Transonic flows (with standing shocks) will be established in various situations
as already suggested in the introduction (figure 1). That is, in the case of disk accre­
tion of unbound gas, inside the inner edge of a geometrically thin accretion disk, inside
the cusp of an accretion torus, etc.

In this section, I shall apply transonic disk accretions discussed in the previous
sections to low-mass binary X-ray sources, which have been extensively observed by
the X-ray astronomy satellite Tenma (e.g., Mitsuda et al. 1984).

Energy spectra from these low-mass binaries are believed to consist of two distinct
components: a nonvarying soft component showing a blackbody spectrum of rv 1
keY, and a hard component showing a rv2-keV blackbody and varying in intensity.
This is interpreted as follows; i.e., the soft component originates mainly from the
inner region of a geometrically thin and optically thick accretion disk around a
compact object, while the hard one comes from the surface layer formed by the ac­
creting material on the neutron star. Furthermore, the thin accretion disk is supposed
to extend very close to the neutron star (figure Ib). However, the separation be­
tween the soft and hard components suggests that there still exists some gap-an
optically thin region-between the inner edge of the accretion disk and the star surface.

Tenma has also discovered absorption lines at the energy level rv4.1 keY in the
spectra from X-ray bursters X1636-536 (Waki et al. 1984). These lines are identified
with the 6.7-keV resonance line of the helium-like iron ion which is redshifted by the
strong gravitational field near the surface of the neutron star. The resultant radius
of the neutron star is about 1.6rg • Although there are several arguments (e.g.,
Fujimoto 1985), the radius of the neutron star in X1636-536 may lie between 1.6rg­

2.4rg ; i.e., smaller than rms in any case.
These facts lead us to the following picture; the radius r* of a neutron star without

rotation and magnetic field is generally smaller than the marginally stable radius
rros of the star. Hence, inside rms' the accreting material which forms a geometrically
thin accretion disk outside r ros infalls transonically onto the surface of the neutron star.
In this region between rros and r*' gas is remarkably rarefied by the rapid infall.
In figure 8, these situations are schematically shown.

Now let us apply the present model to such a flow inside rros in low-mass binary
X-ray sources. In order to specify the flow, two boundary conditions are necessary.
The specific angular momentum around r ms is very close to L ros ; so I first set L=Lros

in the model. From observations (Mitsuda et al. 1984), the temperature of the inner
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Fig. 8. A possible schematic view around a neutron star in low-mass binary X-ray sources.
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Fig. 9. Cold transonic flow inside the inner edge of a geometrically thin accretion disk in
low-mass binary X-ray sources. Parameters are L=Lms and T=1.2x 107 Kat rms'

Thus £=0.942816, rc=2.9828, and r c =1.6650. It is emphasized that the tempera­
ture decreases inward because of the rapid infall.

region of the accretion disk is '" 1keY and thereby I have next set the temperature ofthe
transonic flow just inside r ms 1.2 x 107 K at rms' The results are shown in figure 9.

In actual calculations, I have expanded equations (15), (9), and (14) around the
critical point to obtain several quantities, because the flow is too cold to solve directly
the critical condition (15). For example, the critical point is located at rc=2.9828,
very close to rms, and the specific energy is E=0.942816 which is a bit larger than
Ems=(8/9)l/2. Moreover, the adiabatic index at the critical point is r c= 1.6650 '" 5/3.

As seen from figure 9, the infalling velocity increases rapidly inward due to the
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general relativistic effect. As a result, the temperature decreases inward against the
geometrical contraction; Le., adiabatic expansion takes place in this case in spite of the
fact that the relevant flow is accretion. Furthermore, the flow becomes highly super­
sonic here. In the case of an accretion onto a black hole from the inner edge of geo­
metrically thin accretion disks, the solution displayed in figure 9 may extend to the
horizon; near the horizon of a black hole the flow is almost free fall and isothermal
[see Bernoulli equation (9)].

However, when the central compact star is a neutron star as considered here,
shock waves should stand in the accretion flow and through it the supersonic flow
turns to the subsonic one extending to the neutron star surface. Just inside the shock,
the gas will be significantly heated up to the level of the deep effective potential. In
the case of figure 9, the temperature just inside the shock becomes about 100 keY,
when the shock is located at rs=2.5rg and about 103 keY for rs=2rg • The flow inside
the shock will thus form a very hot hydrostatic atmosphere rotating around a neutron
star and eventually connecting to the star surface through the cool surface layer of
'" 2 keV (see figure 8). This possible hot atmosphere can Comptonize the blackbody
photons of '" 2 keV from the surface of the neutron star.

These pictures are the natural consequence when the radius of the neutron star
is smaller than the inner edge of accretion disks.

7. Concluding Remarks

In this paper, the transonic disk accretion onto compact objects is extensively
examined under a full relativistic treatment with the rigorous equations of state.
The main results obtained are summarized as follows:

I. Multiplicity of critical points has been also found in the present case similar
to the polytropic flow (figures 2 and A2). This is due to the effects of rotation and
relativity. The parameter range allowing multiple critical points was obtained quanti­
tatively. In addition, the types of critical points are the saddle type or the center type
as long as the adiabatic flow is relevant.

2. Critical solutions are classified on the L-E parameter plane (figures 4 and
A3). The plane is divided into three regions via the number of critical points. The
bimodal behavior between the nearly spherical flow and the disk flow suggested in the
previous studies is generalized on this plane.

3. The equations of state adopted quantitatively modify the solutions in com­
parison with those of the polytropic case.· Furthermore, the adiabatic index is no
longer a parameter in the present case (figure AI).

4. Standing shock waves have been taken into considerations (figures 6 and 7)
for the first time. It was found that shocks can stand at several radii for the same
parameters and boundary conditions. Moreover, shocks stand in the transonic flow
onto not only a neutron star but also a black hole. These are also due to the effects
of rotation and relativity.

5. Applications were made to the case of low-mass binary X-ray sources (figures
8 and 9). In these objects, a very cold transonic flow may be established inside the
inner edge of the geometrically thin accretion disk. It further becomes the hot atmos-
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phere surrounding a neutron star via standing shocks. This hot plasma can Com­
ptonize the emission from the surface layer of the neutron star.

At the present stage, instead of solving exactly the hydrostatic balance in the
vertical direction of the disk, I have assumed a cross-sectional area of the disk flow
for simplicity. Hence, the effect of vertical expansion, which cools the shock-heated
gas, just behind the shock is not taken into account (cf. Fukue 1983). There are further
open questions; which position of the shocks we should select; whether the standing
shocks are stable or not; how the subsonic flow inside the shock eventually settles
down on the surface of compact stars. These as well as the cases of nonadiabaticity
and two temperatures for the accreting gas are left as future work.

This work was supported in part by a Grant-in-Aid for the Scientific Research
of the Ministry of Education, Science, and Culture (61740141).

Appendix 1. Adiabatic Sound Speed and Effective Adiabatic Index

In the present analysis, I have used the rigorous equations of state derived from
the relativistic Maxwell-Boltzmann distribution of gas (Cox and Giuli 1968), unlike
previous studies adopting the polytropic relation. For convenience of the reader,
I here summarize several relations: the equations of state, the adiabatic sound speed,
and the effective adiabatic index (cf. Fukue 1986).

For the a-th species of rest mass rna, the pressure Pa and the internal energy density
Sa are respectively expressed in terms of the number density na and of the temperature
Ta as

where

Pa=nakTa ,

Sa=nafa(Ta) ,

(AI)

(A2)

(A3)

and k is the Boltzmann constant. Here Kn's are the modified Bessel functions of
the second kind of order n. For electron-proton gas with the same temperature T,
equations (AI) and (A2) are reduced to equations (7) and (8) in the text.

The adiabatic sound speed is defined by (Fukue 1986)

(A4)

where r is the effective adiabatic index:

the prime denoting the differentiation with respect to T.
equations (A4) and (A5) are reduced respectively to

2-r 2kT
Cs - !p+f.+2kT'

(A5)

For electron-proton gas,

(A6)
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Fig. AI. The adiabatic sound speed Cs and the effective adiabatic index r versus T.

(A7)

These adiabatic sound speed and adiabatic index are shown in figure Al as functions
ofT.

It is worthwhile to note that the value of r is nearly constant in three regimes:
that is, 5/3 at kT<mec2 where both electrons and protons are nonrelativistic, '" 1.44
at mec2<kT<mpc2 where electrons become relativistic, while protons remain non­
relativistic, and 4/3 at kT>mpc2 where both are relativistic.

Appendix 2. Polytropic Disk Accretion

In the investigations so far, the polytropic relation has been adopted for simplicity
[Lu (1985) and references therein]. In this appendix, I summarize the results of such
a polytropic flow in order to compare them with the present results.

For the polytropic flow, we adopt the polytropic relation:

p/nr = constant , (A8)

instead of the equations of state (7) and (8). Hence the Bernoulli equation (9) is re­
placed by

e+p
--Uo=coD.stant .

n
(A9)

(AlO)

Moreover, although the wind equation for the polytropic flow has the same form as
equation (12), the sound speed (14) should be read as, with the help of thermodynamic
equality and the Bernoulli equation,

2=r /( + )={(r-l)(l:-Uo/E) for r*l,
Cs pep uo/E' for r=1 ,

where E and E' are constants.
I emphasize that the index r must be given as a free parameter in the polytropic

flow, whereas it is determined uniquely as a function of temperature in the present case
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Fig. A2. The relations among L, E, and Yc in the polytropic case (Lu 1985). The param­
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figure 2.
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[equation (A7)].
The relations among L, E, and Yc obtained in the polytropic case (Lu 1985) are

qualitatively similar to those in figure 2 but quantitatively different from it. They are
reproduced in figure A2. Parameters given are N=2 and T=4j3. There are three
critical points for 1<E<1.02 in the polytropic case, while there are three for 1<E<
1.009 in the case examined in the text. This is because the effective index is larger
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.than 4/3 in the text.
Critical solutions are also classified on the L-E parameter plane in the polytropic

case (figure A3). The parameters are also N=2 and r=4/3 (see also figure 4).
The features of transonic solutions and standing shocks in the polytropic case are

qualitatively similar to those in the case where the rigorous equations of state are
adopted.
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