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Abstract

It is expected that hot gas emanates hydrodynamically from the sur­
face of an accretion disk in the gravitational field of a central object through
internal heating or irradiation. We examine such disk winds under a simple
approximation in which the force balances parallel and perpendicular to the
streamlines are decoupled. The angular momentum is assumed to be con­
served along each streamline. The energy is injected into each streamline
at the flow base on the surface of the disk. Under these approximations,
we reveal the properties of a two-dimensional flow pattern, such as the
transonic surfaces, of disk winds. When the temperature distribution at
the wind base is not so steep (flatter than lire, re being the equatorial dis­
tance), the gas of the inner disk is gravitationally bound near the disk to
form a corona, while the gas on the outer disk is unbound to escape infinity,
passing through the critical points. On the other hand, if the temperature
distribution is steeper than lire, the gas on the inner disk is unbound and
that on the outer disk is bound. When it is lire, the gas is free or bound
all over the disk surface. Although the transonic nature, such as the loca­
tion or number of the critical points, depends naively on the configuration
of streamlines, the global behavior is independent of the streamlines and
shows the characteristic properties of hydrodynamical winds from the disk.
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1. Introduction

An accretion disk is a promising engine of various active astronomical phenomena:
e.g., active galactic nuclei (AGN), binary X-ray sources, SS 433, star-forming regions,
and so on. So far, the structures of disks have been extensively studied. Toward the
"bi-decennial" of an accretion disk after Lynden-Bell (1969), attention is presently
being focused on the interaction between the disk and such circumstances as the
photon spectra, matter ejection, and influence through the magnetic field.
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Of these, mass outflow from the disk is important in relation to astrophysical jets.
Many researchers have investigated steady flows from geometrically thin disks (Meier
1979, 1982; Katz 1980; Begelman et al. 1983; Begelman and McKee 1983; Fukue 1989;
Blandford and Payne 1982; Sakurai 1987), and those in the funnel of the astrophysical
torus (Fukue 1982, 1983; Calvani and Nobili 1983; Ferrari et al. 1984; Eggum et al.
1985; Lu 1986; Chakrabarti 1986). In these studies, attention was mainly focused
on the driving mechanisms through thermal, radiative, centrifugal, and magnetical
processes.

In a previous paper (Fukue 1989, hereafter referred to as Paper I), Fukue exam­
ined the two-dimensional hydrodynamical winds from a disk, using a one-dimensional
approximation in which the configuration of the streamlines of flow is given a priori.
He obtained the locations of the critical points in the meridional plane and pointed
out that the velocity fields become somewhat complicated in the wind from the disk.
This is partly because the difference in the gravitational potential between the flow
base and the infinity is finite, and mainly because the energy sources are distributed
at the flow base. Moreover, he found that if the energy distribution on the disk is
uniform, the gas in the inner region of the disk is gravitationally bound to form a
corona, while the gas in outer disk escapes to infinity, passing through critical points.

In Paper I the treatment was restricted in the sense that the angular momentum
of the flow is ignored and the streamlines are given a priori. Recently, Takahara et al.
(1989) examined similar problems, using a simplified model in which the streamlines
are determined by the radial balance between the gravitational force and the centrifu­
gal force. In their model, however, the force balance perpendicular to the streamline
was not treated properly. Furthermore, the two-dimensional behavior of the flow was
not considered in their paper.

Thus in this paper we reexamine the hydrodynamical winds from a geometrically
thin disk (disk winds), including the rotation of the gas. We decouple the force bal­
ances into perpendicular and parallel components to the streamline and solve each
component self-consistently.. We also demonstrate the two-dimensional global proper­
ties of disk winds which are similar to those without rotation (discussed in Paper I),
although the location or the number of critical points depends on the configuration of
the streamlines adopted.

In the next section the basic equations are presented. The configurations of the
streamlines are derived in section 3. The disk winds are discussed in section 4. The
final section is devoted to discussion. A simplified treatment of the streamline is
described in the Appendix for a comparison.

2. Basic Equations

Let's consider a gas which is flowing out from the surface of a geometrically thin
Keplerian disk surrounding a central object of mass m. The self-gravity of the disk is
neglected. The flow is supposed to be steady and axisymmetric. It is further assumed
that the gas flow is inviscid and polytropic. The magnetic field in the gas flow is
ignored in this paper. Hence, the specific angular momentum of the gas is conserved
along the streamline. We use cylindrical coordinates (r, ¢, z) with the Z'-axis along
the rotation axis of the disk. Therefore, the configuration of streamlines is given by
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r = r(z; re ), where re is the radial distance of the base of the streamline on the disk.
Each streamline is labeled by re , as in Paper 1.

We treat the momentum equation as being the perpendicular component and
the parallel component to the streamline, seperately. If the pressure gradient force
perpendicular to the streamline is neglected, the force balance perpendicular to the
streamline determines the configuration of streamlines r = r(z; re ), as below. The
force balance parallel to the streamline gives the flow field of disk winds.

Using line element ds along the streamline and dn perpendicular to the streamline,
we can express the equations of motion perpendicular and parallel to the streamline,
respectively, as (cf. Paper I)

and

1 dp

pdn

Gm rdz - zdr L2 dz
-:-(-=2'------:2'-)3=-/'""2 ds + -r3 dsr +z

(1)

dv 1 dp Gm rdr + zdz L 2 dr
v ds + Pds = --:-(r-=2-+-z"""2'-)3=-/'""2 ds +~ ds' (2)

where p is the density, p the pressure, v the velocity along the streamline, and L the
specific angular momentum.

As mentioned before, if we neglect the pressure gradient force in the force bal­
ance perpendicular to the streamline, equation (1) determines the configuration of
streamlines,

Gm (r _ z dr) = L
2

. ..(3)
(r2 + Z2)3/2 dz r3

Furthermore, from equation (2), the momentum equation along the streamline
becomes

dv 1 dp d¢
v-+--+-=O,

dz p dz dz

where the force -d¢/dz along the streamline is expressed as

(4)

d¢ Gm ( dr) L
2

dr
- dz = - (r2 + z2)3/2 Z + r dz + r3 dz' (5)

The first term on the right-hand side of equation (5) is the gravitational acceleration
by the central object along the streamline, whereas the second term is the centrifugal
force, which is newly included in the present analysis.

Along each streamline, the gas conserves its specific angular momentum which
the gas has at the base on the surface of the disk. Since the disk rotation is Keplerian,
the angular momentum conservation can be written as

(6)

where r e is the radial distance of the flow base and specifies each streamline (as was
noted).
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The continuity equation along each streamline is

Apv = Me (constant),

[Vol. 42,

(7)

where the mass efHuxion rate Me is generally a function of the streamline. The cross­
sectional area A of the flow is given by

[
2] -1/2A dr 27rr8r

= 1 + (dZ) 27rre8re Iz ' (8)

where 27rr8r/27rre8re lz is the change in the horizontal area along the streamline, and
[1 + (drldz)2J-1/2 is the projection factor.

Finally, the polytropic relation is adopted:

pip' = Ke (constant). (9)

(11)

(12)

Here, , is a constant and K e is the streamline-function.
Integrating equation (4) under angular momentum conservation (6), we obtain

the Bernoulli equation along the streamline,

v2 c2

- +-- + <p = E e (constant), (10)
2 ,-I

where c2 = ,pip is the square of the sound speed. In equation (10), the effective
potential <p is determined so that it vanishes at the base of each streamline. Therefore,
it is expressed as

Gm Gm £2 (1 1)
<p = - (1'2 + z2)l/2 +~ + 2" r2 - r; .

In this equation the first two terms on the right-hand side express the gravitational
potential and the third term is the centrifugal potential.

Since for the wind considered here v ~ c and <P = 0 at the wind base, constant
Ee in equation (10) indicates the enthalpy injected into the flow at the base of each
streamline. For thermal winds, this constant reflects the temperature distribution Te

of the gas on the disk. Although Ee (or Te ) is generally an arbitrary function of the
streamline, we assume for simplicity that they can be expressed as a power of the
radius r e of the wind base, as in Paper I,

E - 'Rr. -qe - --- e ex: r e ,
,-ljt

where R is the gas constant, jt the mean molecular weight, and q a constant.
Equations (6), (7), (9),and (10) are then the basic equations in integration forms

governing the flow structure along the streamline determined by equation (3).
After manipulating the basic equations above, we have a single ordinary differen­

tial equation, the so-called wind equation. In terms of the Mach number (M = vic),
the wind equation can be written
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where

and
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(13)

(14)

(15)2 2 [A' ')' + 1 ¢']N = M [(')' - I)M + 2] A - 2(')' _ 1) E
e

_ ¢ .

In equation (15) the prime denotes differentiation with respect to z. Moreover, ¢' and
¢ are, respectively, given by equations (5) and (11), and Ee is given by equation (12).

As is well-known, equation (13) has critical points where the denominator D and
the numerator N vanish simultaneously. In the present case, the critical points are
also transonic points where the Mach number becomes unity. Furthermore, when
these critical points exist, the types of critical points are always saddle or center, since
there are no dissipational processes in the present flow.

In the remainder of this paper, we take some reference radius TO and (Gm/ro)1/2
as the units of length and velocity, respectively. By using this normalization, the
Bernoulli equation, e.g., can be rewritten as

v2 c2 ')'€_- + -- +¢= -.-.-re q, (16)
2 ')'-1 ')'-1

where the unit of the normalized variables (v2, c2, and ¢) is (Gm/ro) and that of re

is ro. Furthermore, c = (R/p,)To/(Gm/ro) is the ratio of the thermal energy to the
gravitational energy at the reference radius ro.

Under the semi-two-dimensional treatment presented here, the flow field is spec­
ified by radius r e of the flow base on the surface of the disk. Hence, the parameters
are ultimately')', c, and q.

3. The Configuration of Streamlines

In this paper we have assumed that gas is flowing out from the disk along. a
streamline determined by equation (3), meaning a balance betweeJl. gravitational and
centrifugal accelerations perpendicular to the streamline, itself.

With the help of angular momentum conservation (6) along the streamline, we
rewrite equation (3) as

dr r - re (1 + Z2/r2)3/2
dz z

In Takahara et al. (1989), the left-hand side was Ignored (see the Appendix).
Equation (17) can easily be integrated to give

re (r2+ Z2)1/2 Z
- - + + (2 2)1/2 = X (constant),z . z r +z

(17)

(18)
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Fig. 1. Configuration of streamlines determined by the balance between the gravita­
tional force and the centrifugal force perpendicular to the strllamline. According
to the values of X indicated on each curve, several configurations are possible. We
consider the case X = 2 in this paper as an example, since for X ~ 2 the streamlines
extend to infinity. The dotted curve represents a configuration in which dr / dz is
dropped in the determination (see the Appendix).

or written as an explicit form ofr = r(z; re ):

r2 = {re + xz+ [(re ~ xz? - 4z2]1/2} 2 _ z2.

The configuration of the streamlines forms a one-parameter family through X. This
integration constant, X, corresponds to the direction in which the gas is initially ejected
from the disk surface.

In figure 1, several streamline configurations in the meridional plane are shown
by solid curves. The location of the flow base is fixed at r e = 1. For a comparison,
the streamline where dr / dz is neglected is also shown by a dotted curve (see the
Appendix).

It should be noted that the family of the configuration of streamlines shown in
figure 1 is just the coordinate orthgonal to the equi-potential surfaces of the effective
potential (11) under a constant specific angular momentum (6). Therefore, the com­
bined gravitational and centrifugal forces always act backward along the streamline.
The gas is thus driven by the pressure gradient force along the streamline. The dotted
curve, on the other hand, is the locus of the points where the radial derivative of the
effective potential vanishes.

The cross-sectional area (8) along the streamline is explicitly written as
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(20)

(21)

[
2] -1/2A-I + (dr) . . {re + XZ + [(re + XZ)2 - 4z2jl/2}2

- dz 4re [(re + XZ)2 - 4z2J1/2 '

where dr/dz is given by equation (17).
As shown in figure 1, the streamlines are curved toward the rotation axis for

X < 2. Since the gas cannot approach the vicinity of the rotation axis, due to the
angular momentum barrier, streamlines with X < 2 are inadequate, at least far above
the equator. Furthermore, in the case X < 2, the cross-sectional area decreases along
the streamline.

On the other hand, for X ~ 2 the streamlines extend to infinity and the cross­
sectional area increases along the streamline. We thus adopt the case X ~ 2 as the
configuration of streamlines. In particular, we consider the case X = 2 in the next
section.

4. The Global Pattern of Disk Winds

Now we examine the hydrodynamical winds from a geometrically thin disk, con­
centrating attention on the two-dimensional global properties, such as whether the
gas can escape or not.

Since for the winds the sound speed c tends to zero at infinity, from the Bernoulli
equation (16), the terminal speed Voo of the flow is expressed as

v~ ,,/e 1 1
2 "/ - 1 re

q
- 2r e

If the right-hand side of equation (21) is negative, the gas is gravitationally bound, as
was pointed out in Paper I, where the rotation was not included and, therefore, the
factor 1/2 on the right-hand side of equation (21) was dropped. On the other hand,
the gas can escape to infinity for a positive value of the right-hand side.

Such global properties of disk winds depend on ,,/, the ratio e, the radial position re

of the wind base and, further, the temperature distribution q on the wind base. Hence,
in the following of this section, we consider in turn such disk winds for several cases
of the temperature distribution at the wind base; flatter case (q < 1), intermediate
one (q = 1), and steeper one (q > 1). In addition, we set X = 2 for the configuration
of streamlines (as was stated). Theresults described below are qualitatively the same
for the case X ~ 2, where the streamlines extend to infinity.

4.1. Case of q < 1
We first consider the case where the distribution of the enthalpy (or the tem­

perature) at the wind base is flat. In the case q < 1, from equation (21), the gas
is gravitationally bound when r e < [('Y - 1)/(2,,/e)p/(l-Q), while it can escape to
infinity otherwise. This situation is also seen below, regarding the locus of the critical
points.

The positions of critical point, Zc (or rc ), in each streamline (specified by re ) are
determined by the condition that the numerator of equation (13) vanishes: N = o. In
the upper panel of figure 2, the loci of critical points Zc are plotted as a function of re
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Fig. 2. Loci of critical points Zc for various values of E: in the case of a flatter tem­
perature distribution (q = 0). The values of E: are indicated on each curve. The
parameter'Y is fixed as 'Y = 5/3. In the upper panel, Zc is plotted as a function of
Te, the position of the flow base on the equator, whereas the relations between Tc

and Zc are displayed in the lower panel. The solid curves indicate the critical points
of the saddle type, while critical points of the center type are denoted by dashed
curves. Note that in some range of Te there are multiple critical points. Moreover,
inside Te < [C'Y - 1)/(2'YE:)jl/(1-q), there are no wind solutions. Thin solid curves
in the lower panel represent the streamlines adopted.
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Fig. 3. Loci of critical points Zc for various values of'Y in the case of q = O. Parameter
c: is fixed as c: = 1.

for various values of c in the typical case of q = 0 and 'Y = 513. In the lower panel of
figure 2, on the other hand, the relations between r c and Zc in the meridional plane
are plotted by thick solid curves. These curves represent the sonic surfaces of the flow
field for a given set of parameters. The configuration of the streamlines is expressed
by thin solid curves.

As mentioned above, in the inner region (re < 0.2 c for figure 2), there are no
wind solutions extending to infinity and the gas near the disk plane is gravitationally
bound to form a corona, since for the given parameters the thermal energy of gas
at the flow base is too small for the gas to be lifted up to infinity. Whereas, in the
outer region, the gas can flow out from the disk to infinity, either as a supersonic wind
passing through critical points or as a supersonic wind (or a subsonic breeze) without
passing through them. These global properties are qualitatively the same as those
demonstrated in Paper 1. In addition, it is also found that multiple critical points on
the same streamline appear in some range for the present case. The solid (dashed)
curves represent the saddle (center) type in figure 2.

Since the critical solutions of each streamline are similar to those in Paper I, we
do not present them here.

The dependence of the positions of the critical points on 'Y is shown in figure 3.
Parameter c is fixed as c = 1. As expected, the wind region extends inward as 'Y
approaches unity.

4.2. Case of q = 1
We next consider the case where the temperature at the wind base decreases as

lire. In this case, the gas is free (bound) all over the disk when c is greater (less)
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Fig. 4. Same as figure 2, but for the case in which the temperature at the flow base
varies as lire (-y = 513). Note that the loci of critical points are closed.

than b - 1)/(2')').

The loci of critical points are plotted as a function of re for various values of E: in
the upper panel of figure 4. Parameter')' is fixed as ')' = 5/3. In the lower panel, the
transonic surfaces in the meridional plane are shown.
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Fig. 5. Same as figure 3, but for the case in which the temperature at the wind base
varies as lire (c = 0.3).

Unlike the case of a flatter temperature distribution, q < 1, the locus is not open
but closed for E: > b - 1)/(21'). If the gas escapes to infinity, it then flows as a
transonic wind from the inner region, while acting like an initially supersonic wind or
subsonic breeze from the outer region.

The I'-dependence is shown in figure 5 for the case of E: = 0.3. The global prop­
erties of the flow in the case of q = 0 does not strongly depend on 1'.

4·3. Case of q > 1
Finally, we show the results of a steeper temperature distribution. In the inner

region of r e < [2q/b _l)jl/(q-l), the gas can escape, while being bound in the outer
disk.

The loci of critical points in the case q = 2 and I' = 5/3 are plotted for various
values of E: in the upper panel of figure 6. In the lower panel, the transonic surfaces in
the meridional plane are shown. In the inner wind region, the position of the critical
points moves to infinity as the flow base approaches the outer corona region.

The dependence on I' is shown in figure 7. In this case, the inner wind region
extends outward as I' approaches unity.

5. Discussion

In this paper we examine the global properties of thermal disk winds under an
approximation in which the configuration of the streamlines is determined by the
balance between the gravitational force by the central object and the centrifugal force
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Fig. 6. Same as figure 2, but with a steeper temperature distribution of q = 2 (1 =
5/3). In this case, the gas in the inner region escapes while being bound in the outer
region. Furthermore, in the inner wind region, there appear multiple critical points,
while the critical points appearing in the outer corona region are of the center type.

perpendicular to the streamline, itself. We demonstrate a two-dimensional pattern,
similar to the results of Paper 1 in which the rotation was not included. That is, when
the temperature distribution at the wind base on the surface of the disk is flatter (than
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Fig. 7. Same as figure 3, but with a steeper temperature distribution of q = 2 (e = 1).

lire), the gas on the inner region of the disk is gravitationally bound to form a corona
(figures 2 and 3). However, the gas in the outer region can escape to infinity. Hence,
hollow cylindrical winds may be realized. In the inner wind region, the terminal speed
of the winds are given by equation (21) from energy conservation along the streamline.

On the other hand, if the temperature at the wind base changes as lire, the
terminal speed becomes v~/2 = bc/({ - 1) - 1/2]/re . In this case, the entire region
of the disk surface is windy or bound (figure 4). If it is windy, the terminal speed is
greater in the inner region.

Finally, for a steeper temperature distribution (than lire), the situation is re­
versed: that is, the gas in the inner disk can escape while the gas in the outer region
is bound (figures 5 and 6). Moreover, disk winds may become filling-up winds.

In the present disk winds, multiple critical points also appear, as in Paper I.
A multiplicity of critical points often arises by the effects of rotation (Limber 1967;
Henriksen and Heaton 1975; Fukue 1987), variable cross-section (Kopp and Holzer
1976), or an additional gravitating body (Fukue and Yamamoto 1986). In the present
case, the multiplicity occurs due to a deviation in the shape of the gravitational
potential along the streamline from that of a spherical wind, as in the case of Paper
I; the effect of rotation is not essential.

In this paper, we do not consider the configurations of streamlines with X < 2
in figure 1, since in such cases the streamlines converge toward the rotation axis.
However, in the vicinity of the disk, there is no preferred direction for the gas to
start. If the gas starts from the disk surface in the vertical direction (X = 0), it
is naturally curved toward the rotation axis and self-collimated under the actions of
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gravity and rotation. If such a self-collimation really takes place in the disk winds, the
gas encounters an angular momentum barrier and may again turn to a diversing flow
along the barrier. For such a stage, of course, the pressure gradient force cannot be
ignored in the force balance perpendicular to the streamline, and the present treatment
would be violated. Numerical simulations are therefore necessary.

The pressure gradient term perpendicular to the streamline also becomes signif­
icant near the disk surface when the temperature gradient along the disk plane is so
steep. Hence, the streamline for q > 1 is somewhat modified for a more realistic flow.

rv

For a uniform temperature distribution of q rv 0, however, this pressure gradient term
perpendicular to the streamline can be safely ignored. Exactly speaking, in the left­
hand side of equation (1), there is an inertial term that arises from the centrifugal
force due to the curvature of the streamline in the meridional plane. We have also
dropped that term since, for a streamline of X > 2, the curvature of the streamline is
small.

Various mechanisms are supposed to drive thermal disk winds, the most important
of which are the irradiation of the accretion disk by the central source (Hayakawa 1981;
Hoshi 1984) and the two-temperature hot accretion disk (Shapiro et al. 1976; Kusunose
and Takahara 1988; White and Lightman 1989). In the former case, the irradiation
is dominant in the outer disk, where the disk temperature varies as T ex: r- 3/ 7

(Hayakawa 1981). If the temperature of the wind base is proportional to the disk
temperature, the temperature distribution is rather flat and the disk winds may flow
in the outer region of the irradiation disk.

In hot accretion disks, the gas is heated to a relativistic temperature in the inner
region of the accretion disk. In particular, if pair processes are taken into consideni­
tion, no steady solutions of a hot accretion disk have been found in the region around
5rg , r g being the Schwarzschild radius of the central object (Kusunose and Takahara
1988; White and Lightman 1989). Due to the pair creation processes, the electron
temperature reaches a ceiling of rv 1010K in these regions (Kusunose and Takahara
1988). It thus seems that the temperature distribution is uniform (q rv 0) there. Fur­
thermore, if we set To = 1010K at ro = 5rg , we have c: = 0.02. Hence, from figures 2
and 3, the entire hot region around 5rg becomes windy for smaller I' while only the
outer part is windy for I rv 5/3. In the latter case, the inner part may initially puff up
to form a geometrically thick disk; then, the pair winds start to blow from the surface
of the thick disk where the depth of the gravitational potential is shallow.

The magnetic field of gas has not yet been taken into consideration. If the mag­
netic field is considered, Alfvenic critical points appear in addition to those of acoustic
origin (Weber and Davis 1967; Blandford and Payne 1982; Sakurai 1987). Moreover,
magnetic tension will affect the configuration of the streamlines. A study of the influ­
ence of the magnetic field on the disk is left as future work.

The authors would like to thank Professor S. Kato and Drs. S. Inagaki and
Y. D. Tanaka for their useful comments. This work was supported in part by a
Grant~in-Aid for Encouragement ofYoung Scientists of the Ministry of Education,
Science and Culture (63740133, 01740144).
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Appendix. The Case of Quasi-Vertical Streamlines

In Takahara et al. (1989), the term dr/dz is dropped in equation (17), although
it is retained in the other equation (5) expressing the force along the streamline or in
equation (8) for the cross-sectional area. By setting dr / dz = 0 in equation (17), the
streamline becomes

(AI)

This configuration is shown in figure 1 by a dotted curve. In this appendix, we briefly
examine the hydrodynamical winds under the streamlines given by equation (AI) for
a comparison, although our attention is concentrated on the two-dimensional global
properties.

Under the configuration of streamlines (AI), the cross-sectional area yields

(A2)

This cross-sectional area is not a monotonically increasing function of r (or z), but
has a minimum at r = re (35/32)3/2 rv 1.14re . That is, it initially decreases near
the disk plane (dA/dz < 0); ,then, beyond z > re(3/32)1/2(35/32)3/2 rv 0.350re it
increases (dA/dz > 0). Since the numerator N of equation (13) cannot vanish in
the region where the cross-sectional area decreases, critical points always exist in the
A-increasing region. As in the text, for parameters 'Y and 10, we seperately consider
disk winds in the several cases of the temperature distribution at the wind base.

A.l. Case of q < 1
In the upper panel of figure AI, the loci of critical points Zc are plotted by the

solid curves as a function of r e in the typical case of q = 0 and 'Y = 5/3 for various
values of e. In the lower panel of figure AI, on the other hand, the relations between
r c and Zc in the meridional plane is plotted by thick solid curves.

Inside r e < [("( - 1)/(2'Ye)jl/(l-q), the gas is gravitationally bound; however, it
can escape in the outer region, similar to the case discussed in the text. In contrast to
the case shown in figures 2 or 3, however, multiple critical points do not appear in this
case. This means that the properties of the disk winds discussed in this appendix and
by Takahara et al. (1989) resemble spherical winds, like solar winds. Furthermore,
this shows that the transonic nature of disk winds near the disk plane depends naively
on the configuration of the streamlines: that is, on the forms of the cross-sectional
area A(z) and the effective potential ¢(z). As already stressed, however, the global
behavior, such as whether the gas can escape or not, is essentially independent of
them. It depends mainly on the temperature distribution at the flow base.

It should be noted that the loci move self-similarly as a function of e. Such a self­
similarity is lost in the case described in the text because of the integration constant

x·
As already noted, the critical points are always located in the region z > 0.350re .
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Fig. Ai. Loci of critical points Zc for various values of c: in the case of a flatter temper­
ature distribution (q = 0). The values of c: are indicated on each curve. Parameter
'Y is fixed as 'Y = 5/3. See the legend of figure 2. Since the configuration of the
streamlines is different from that of figure 2, the locations of the critical points are
changed. The global properties, however, do not depend on the streamlines.

A.2. Case of q = 1
The case where the temperature at the wind base decreases as lire is shown in

figure A2 for various values of € ({ = 5/3). The gas is free (bound) when € is greater
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Fig. A2. Same as figure AI, but for the case in which the temperature at the flow
base varies as lire (-y = 5/3). See also figure 4.

(less) than (r - 1)/(2,).
In this case, the transonic surface becomes a cone whose top coincides with the

center and, therefore, it intersects all of the streamlines. Furthermore, the global flow
pattern becomes self-similar.
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Fig. A3. Same as figure AI, but with a steeper temperature distribution of q = 2
(-y = 5/3). See also figure 6.

A.3. Case of q > 1
Finally, we. show the results of a steeper temperature distribution (q = 2) in figure

A3 for various values of c b = 5/3). In the inner region of r e < [2'}'c/b - l)]l/(q-l),
the gas can escape, while it is bound in the outer disk.
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