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Abstract

Accretion disks/disk accretions ((3-disks) driven by the external radiation drag exerted by a central
luminous source are presented under the steady and subrelativistic approximations. In a cold regime,
where the gravity of the central object, the radiation force, and the radiation drag are included, but the
pressure-gradient force is neglected, we find steady solutions such that the infalling velocity Vr is inversely
proportional to radius r far from the center and becomes constant near to the center, while the rotation
velocity vIP is Keplerian far from the center and drops exponentially near to the center. In a warm regime,
where the effect of the gas pressure is also taken into account, we find steady transonic solutions such that
a flow accreting subsonically and rotating with the Keplerian velocity far from the center becomes, after
passing a sonic point, an almost radially accreting supersonic flow with no angular momentum. Due to the
effect of external radiation drag, the angular momentum of the gas is removed. In particular, it is quickly

lost inside the characteristic radius ro, which is expressed as ro = r
2

rrg,where r is the central luminosity
1-

normalized by the Eddington luminosity and r g is the Schwarzschild radius of the central object. As a result,
the nearly Keplerhin rotating disk outside ro turns to a nearly radial flow inside roo Furthermore, in the
vicinity of the central object the infall velocity attains a terminal value, at which the effective gravity is

balanced by radiation drag. The terminal speed Voo is found to be Voo = - 1;,r c. Such accretion disks,

where the angular momentum is removed via the external drag of radiation fields from the central source,
are possible in several astrophysical contexts. For example, in the case of an X-ray burster the radiation
density at the burst phases is very high in the inner region of the accretion disk, and therefore, the gas­
accretion processes are remarkably enhanced due to the external radiation drag. Also, in a protoplanetary
disk the external radiation drag may play an important role if a sufficient amount of dust exists in the disk.

Key words: Accretion disks - Active galactic nuclei - Protoplanetary disks - Radiation drag ­
X-rays: binaries

1. Introduction

In a wide range of astrophysical contexts, an accretion
disk is commonly believed to be a prime-mover of vari­
ous active phenomena. In star-forming regions, accretion
disks are formed around a protostar, drive (or at least
assist) bipolar jets, and eventually evolve to protoplane­
tary disks. In a close binary system, such as cataclysmic
variables and X-ray binaries, an accretion disk, which is
formed around a compact star due to gas supply from a
companion, is responsible for such violent events as novae
and X-ray bursters, and shines brighter than the stars.
Also, the peculiar galactic object SS 433 exhibits a pair
of subluminal jets which are ejected from a geometrically
thick disk formed around a compact object. Finally, ac-

cretion disks in active galactic nuclei are believed to work
as a central engine of the activity and to produce extra­
galactic radio jets.

In the current picture of an accretion disk, the an­
gular momentum of the disk gas is transferred out­
ward via internal viscosity, which originates from tur­
bulent/magnetic motions, and consequently, the gas ac­
cretes onto the center (Shakura, Sunyaev 1973). This
model is referred to as the standard model or the (t­

viscosity model. Very recently, a new mechanism by
which angular momentum is removed via radiation drag
due to the cosmological background radiation fields dur­
ing the early universe has been proposed and investigated
to some extent (Loeb 1993; Umemura et al. 1993). Based
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2. Basic Equations

where E is the surface density, Vr the radial infalling ve­
locity, and lVI the constant accretion rate. Using the

Let us suppose an axisymmetric gaseous disk which is
steadily rotating around a central object of mass M. We
ignore the self-gravity of the disk gas. The disk is as­
sumed to be geometrically thin, and therefore, the phys­
ical quantities are integrated over the vertical direction.
It is also assumed to be effectively optically thin. We use
cylindrical coordinates (r, ip, z) with the z-axis along the
rotation axis of the disk, and adopt the Newtonian for­
malism for simplicity. Under these assumptions the basic
equations governing the structure of the disk immersed in
radiation fields produced by the central luminous object
are described as follows.

The continuity equation is

on this mechanism, cosmological accretion disks (,B-disk),
in which the angular momentum is removed via exter­
nal radiation drag, have been investigated· by Fukue and
Umemura (1994) and Tsuribe et al. (1994) (see also
Umemura, Fukue 1994 for a spherical case).

In accretion disks .around neutron stars, on the other
hand, the importance of radiation drag was also pointed
out (Fortner et al. 1989; Lamb 1989, 1991; Miller, Lamb
1993). That is, they discussed the idea that radiation
drag causes the plasma in the inner corona near to the
neutron star to lose its angular and vertical momenta and
to fall approximately radially toward the star (Fortner et
al. 1989; Lamb 1989, 1991). Along these lines, Fortner
et al. (1989) carried out numerical simulations of radial
accretion flow near to the neutron stars under a radia­
tion force, using a one-dimensional, time-dependent ra­
diation hydro-code. Miller and Lamb (1993) computed
the trajectories of test particles immersed in radiation
fields emitted from a neutron-star surface. In these stud­
ies, however, they considered the particle dynamics; Le.,
the effect of gas pressure, or further, the structure of the
accretion disks was not examined.

The aim of this paper is thus to consider the proper­
ties of gaseous disks immersed in radiation fields from
a central luminous source in the context of such a new
mechanism of angular-momentum removal through the
external radiation drag.

In the next section the basic equations are described.
The accretion disks/disk accretions in a point-mass po­
tential are presented in section 3. In section 4, the general
consequences of such accretion under the external radia­
tion drag are discussed. Some astrophysical applications
of such accretion disks are also considered in section 4.
The results are summarized in section 5.

(2)

(5)

density p of the disk gas and the half-thickness H of the
disk, the surface density is expressed as E = 2p1I.

The equations for radiation hydrodynamics in a mov­
ing plasma are found in, e.g., Hsieh and Spiegel (1976)
and Fukue et al. (1985). To the lowest order of v / c,
where v is the bulk velocity of the plasma and c the light
speed, the equation of motion in the radial direction un­
der the influence of radiation fields is

dVr v~ 1 dII GM
Vr - - - = --- ---

dr r E dr r 2

1 neaT ( .. )+--- F-v·ptJ -Evp c J r ,

where vep is the azimuthal rotation velocity, II (= 2pH)
the gas pressure integrated over the vertical direction (p
being the pressure of the disk gas), ne the electron num­
ber density, aT the Thomson scattering cross section, E
the radiation energy density, F the radiation flux, and
pij the radiation stress tensor. The third term on the
right-hand side of equation (2) is the radiation force and
the radiation drag force, which is proportional to the ve­
locity.

For a radiation field produced by a central source with
luminosity L, the radiation flux F is expressed as F =
L / 41rr2 and the radiation energy density E becomes F / c
at large r. Furthermore, the rr- and rip-components of
the radiation stress tensor pij are given as prr = E and
prep = 0, respectively. Hence, the equation of motion in
the radial direction is rewritten as

Vr dVr _ v~ = _~ dII _ GM (1 _ r +2rVr ) . (3)
dr r E dr r 2 c

Here, we introduce the parameter r, which expresses the
ratio of the radiation force to the gravitational force:

L
r = Xe L

E
' (4)

where Xe( = ne/np ) is the ionization rate (np being the
proton number density) and LE (= 41rcGM mp/ aT) is the
Eddington luminosity (mp being the proton mass). For
fully ionized electron-proton plasmas, this parameter r is
just the central luminosity normalized by the Eddington
luminosity, and therefore, should be less than or equal
to unity (for electron-positron plasmas r becomes of the
order of mp/me ).

The equation of motion in the azimuthal direction un­
der the influence of radiation fields is

dvep vrvep 1 neaT ( . . )Vr - +-- =---- v·ptJ +Ev .
dr r p c J ep

Here, the right-hand side comes from the external radi­
ation drag, which plays an essential role in the present
model. For the present case where the radiation field
is produced by the central source, the ipip-component of
the radiation stress tensor pij vanishes ar large r. Hence,
by using the parameter r, this equation (5) can also be
rewritten as

(1)21rrEvr = -lVI,



II

~

which gives the half-thickness H of the disk.
Finally, the equation of state is
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Vr dvcp + vrvcp = _ GM f vCP. (6) angular momentum is removed and accretion may be-
dr r r2 c come possible even in the Newtonian case (cf. Fukue,

The hydrostatic balance in the vertical direction is in- Umemura 1994 for cosmological accretion disks).
tegrated as Before discussing the numerical solutions of equations

(9) and (10), we examine the asymptotic behavior of
(7) these equations. That is, near to the center we expand Vr

and vCP' substitute them into equations (9) and (10), and
then collect the leading terms. Consequently, as the only
physically meaningful solutions, we find the asymptotic
solutions near to the center such as

(8) (11)

where R is the gas constant and J.L the mean molecu­
lar weight. In the present paper we ignore the heating
and/or cooling inside the disk; we assume, if necessary,
that the disk gas is isothermal.

1v ex: _e-ro/r
cp r

Here, the characteristic velocity V oo is

(12)

(9)

That is, the infall velocity reaches this terminal speed Voo

when the effective force is balanced by radiation drag.
The characteristic radius ro is expressed as

where r g = 2GM/ c2 is the Schwarzschild radius of the
central object. Inside this characteristic radius ro the
angular momentum is quickly lost and the rotating flow
turns to radially infalling flow. Considering the fact that
the infall velocity cannot exceed c, we find that the con­

.dition that f > 1/3 should be s.atisfied for the gas to
accrete onto the center under the present Newtonian ap­
proximation.

Far from the center, similar procedures yield the fol­
lowing asymptotic solutions at infinity:

(13)

(14)

I-f
v =---c.

00 2f

3.1. Cold Regime

In the cold case, equations (3) and (6), which govern
the dynamical properties of accretion, become respec-
tively .

dVr v~ GM ( Vr )
Vr - = - - -- 1 - f + 2f-
~ r ~ c '

3. Accretion Disks Driven by External Radia­
tion Drag

Now we examine an accretion disk/disk accretion,
where the mass accretion is caused by external radiation
drag instead of internal friction. In order to understand
the basic properties of the present accretion problem, we
first examine the cold case, where the pressure-gradient
force is ignored, and then consider the transonic nature
of the present flow.

Vr d ( GM Vcp-- rv ) = --f-.
r dr cp r2 c

(10)
GM(1 - f) 1 2GMf

Vr = - - = -.---Ivool r cr'
(15)

In the intermediate region of r, we should solve equa­
tions (9) and (10) numerically. In figure 1 we show the
numerical solution which satisfies boundary conditions
(11) and (12) near to the center and (15) and (16) at
infinity. In figure 1 the abscissa is the radius r in units
of ro and the ordinate is the velocity in units of Voo '

As a result, due to the existence of external drag, disk.
accretion to the central object takes place in the cold
case.

When there is no radiation field (f = 0), this is the fa­
miliar infall problem with constant specific angular mo­
mentum. That is, it is well known that above equa­
tions (9) and (10) have an infalling type solution, where
Vr = -J2E + 2GM/r - P/r2 and Vcp = J/r, E (spe­
cific energy) and J (specific angular momentum) being
constant. This infalling solution, however, has an infinite
angular-momentum barrier near to the center. Hence, no
accretion takes place for f = 0 under the Newtonian ap­
proximation. [It should be noted that in the relativistic
case accretion is possible, since the height of the angular­
momentum barrier becomes finite (see Fukue 1987 and
references therein).]

On the other hand, when there is an interaction be­
tween the disk gas and radiation fields (f #- 0), the

Vcp = JGM(~ - f). (16)
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Fig. 1. Examples of numerical solutions in the cold
regime. The abscissa is the radius r in units of
ro and the ordinate is the velocity in units of V oo .

A solid curve denotes the infall velocity V r while a
dashed curve represents the rotating velocity v",.

Fig. 2. Critical curves on the sonic plane (M r = -1)
for the warm-isothermal accretion for several values
of [3(= cs/lvool). The abscissa is the critical radius
r c while the ordinate is rcM""c. Solid curves rep­
resent the saddle type whereas small circles denote
the center type.

Introducing the radial Mach number, M r (= vr/cs), and
azimuthal Mach number, M<p (= v<p/cs ), and measuring
theradius in units of GM(I-r)/~,we rewrite the above
equations (17) and (18) as

3.2. Warm Regime

Here, let us examine the effect of pressure on the
present accreting flow. In such a warm case the problem
is reduced to transonic" accretion flow onto the central
object with external drag. Since the essential proper­
ties are the same between the adiabatic and isothermal
cases, for simplicity we assume that the flow is isother­
mal: II/~ = c~ (cs being a constant isothermal sound
speed).

Then, after some manipulations the basic equations
(1), (3), and (6) are rearranged to

V
r
[v~ + c~ _ GM(I- r) (1- ~)]

d r r r 2 Voo
V

r (17)
dr v; - c~

dv<p v<p GM(1 - r) v<p
-=--+ 2 --.
dr r 2rvoovr

(21)1 Ivoo I 1- r cfi = ~ ="2I' Cs •

As is easily expected, the physical meaning of i!J is just the
r:eciprocal of the radial Mach number near to the center.
These equations are the so-called wind equations for the
present problem.

When there is no external drag (i!J = 0), these equa­
tions are reduced to those for well-known disk accre­
tion onto a central object with constant specific angu­
lar momentum (e.g., Limber 1967; Henriksen, Heaton
1975; Liang, Thompson 1980; Fukue 1987 and references
therein). Transonic· accretion under the external radia­
tion drag, such as in the present problem, however, has
not been investigated, except for the cosmological accre­
tion disk (Fukue, Umemura 1994; Tsuribe et aL 1994;
Takahashi et al. 1994).

where the only parameter i!J is defined as

3.2.1. Critical curves and topologies

As is well known, wind equations (19) and (20) be­
come critical/transonic at the radius where the denomi.,
nator and numerator vanish simultaneously. When there
is no drag (i!J = 0), we have two critical points: one is a
saddle (solar wind type), where the transonic flow passes
through and the other is a center, where the flow cannot
pass (e.g., Henriksen, Heaton 1975). In the present case,
we have not critical points but critical curves; equations
(19) and (20) are critical not at some points but on a

(18)

(19)

(20)

[M~ 1 1 ( - )]M r -r- + r- ~ 1 + ,6Mr

M;-1
dM r

dr
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Fig. 3. Examples of transonic solutions which satisfy the appropriate boundary conditions. (a) The abscissa is the radius r
in units of GM(l - r)/c; while the ordinate is the radial Mach number vrlcs (solid curves) and the azimuthal Mach
number v<plcs (dashed curves). The value of i3 is for (3 = 0.1 and 0.5. The physical quantities at the critical points for
these examples are rc = 0.0995 and M<p,c = 2.836for i3 = 0.1 and rc = 0.275 and M<p,c = 0.905 for i3 = 0.5. (b) The
same solutions, but the radius is in units of the characteristic radius ro and the ordinate is the velocities in units of the
terminal speed v oo .

curve in the (r, M r , Mep)-phase space, since the specific
angular momentum is no longer conserved.

The critical conditions for accretion (M r < 0) are

3.2.2. Critical solutions
For a given ~ there are many transonic solutions which

cross the critical curve at one point of the saddle type, ac­
cording to various boundary conditions. We must there­
fore specify the appropriate boundary condition for the
present problem. Similar to the cold case, we expand
variables M r and Mep near to the center and far from
the center, and obtain the asymptotic solutions. Near to

where the subscript c denotes "critical". Equations (22)
and (23) determine the critical curve in the (r, Mr, Mep)­
phase space for each value of~. The flow is also transonic
on this curve in the sense that the radial Mach number
is -1 there.

The loci and types of critical curves on the sonic plane
(M r = -1) are shown in figure 2 for several values of~.
In figure 2 the abscissa is the critical radius r c while the
ordinate is r cMep,c there. Solid curves represent the sad­
dle type, whereas the small circles denote the center type.
In order for a positive r c to exist, ~ must be less than
unity; Le., the terminal radial Mach number voo/cs is less
than -1.

the center the only asymptotic solutions which are phys­
ically meaningful are

(25)

(24)

~ (r--+oo), (26)M r =--
r

1
(r --+ (0). (27)Mep=-vr

r Mep ex exp (- ~;) (r --+ 0).

1
M r = --= (r --+ 0),

(3

That is, the flow must be Keplerian at infinity.
An example of transonic solutions which satisfies the

above boundary conditions is shown in figure 3. In figure
3a the abscissa is the radius r in units of GM(l - r)/c~

while the ordinate is the Mach numbers. The param­
eter ~ is ~ = 0.1 and 0.5; Le., the terminal radial

These are just the same as the asymptotic solutions (12)
and (13) for the cold case. That is, near to the center the
angular momentum drops exponentially and the radial
Mach number becomes a constant terminal one voo/cs '

Indeed, all ofthe transonic solutions for some ~ approach
these asymptotic solutions near to the center, although
this is not the case far from the center.

Far from the center, on the other hand, the appropriate
asymptotic solutions are

(22)

(23)M~,c = -1 + (1- ~)/rc,

Mr,c = -1,



434 J. Fukue and M. Umemura [Vol. 47,

Mach number vanishes [see the critical condition (23)].

4. Discussion

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fig. 4. Physical quantities at the critical points for tran­
sonic solutions satisfying the appropriate boundary
conditions as a function of /3.
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4.1. General Properties
Similar to cosmological accretion disks, where the gas

interacts with the cosmic background radiation (Fukue,
Umemura 1994), in the present disk, which is immersed
in external radiation fields around the central source,
the disk gas can accrete steadily due to the angular­
momentum removal via radiation drag. We call this type
of accretion disk the /3-disk. However, there exist sev­
eral distinct properties between the cosmological accre­
tion disks and the present disks, since the radiation-drag
coefficient is spatially constant in' the former, but in the
present case it is inversely proportional to r2 .

For example, when the rotating velocity is written as
a power of r (say, v"" <X r b ), from the angular momentum
equation (6) the infalling velocity Vr must be proportional
to l/r:

This isjust the consequence ofthe fact that the radiation­
drag coefficient is not constant but proportional to l/r2

.

This power-law type solution is realized far from the cen­
ter; equation (15). In the outer region the infall timescale
tinfall is

In cosmological accretion disks (Fukue, Umemura 1994),
on the other hand, homologous accretion takes place
when the rotating velocity is written as a power of r,
since the infalling velocity is proportional to r and the
infall timescale is uniform in such a region.

Otherwise, the angular-momentum equation (6) has an
exponential-type solution; e.g., if Vr is constant,

GMr
rv"" <X exp(--). (30)

cvrr

This is just the asymptotic solution (12) near to the cen­
ter.

As a result, there appears the characteristic radius ro
[equation (14)], inside which radiation drag of the cen­
tral radiation fields is effective and rotating flow turns to
radial flow with the terminal speed Voo [equation (13)],
which the radial velocity approaches near to the center.

For nearly an Eddington limit case (r '" 1), simi­
lar expressions were obtained by Lamb and colleagues
(e.g., Fortner et al. 1989; Lamb 1989, 1991), although
the factor is somewhat different from the present re­
sults. For example, they argued that inside the radius
rradial '" 27TGM(1 - €)2/(€C2), where their 1 - € is equal

tinfall = I!...-I = (b +r 1) ~.
Vr rgc

(28)

(29)

GMr 1
(b+l)cr'

V r =

Mach number is 10 and 2. The physical quantities at
the critical point for these examples are r c = 0.0995
and M"",c = 2.836 for /3 = 0.1 and r c = 0.275 and
M"",c = 0.905 for /3 = 0.5. In order to compare this
warm case with the previous cold case, the same solu­
tions are displayed in figure 3b, where the radius is in
units of the characteristic radius ro and the ordinate is
the velocities in units of the terminal speed voo •

In the warm case, losing angular momentum through
the action of external drag, the flow initially accretes with
almost Keplerian, passes through the transonic point,
and then quickly loses angular momentum to infall al­
most radially until the effective gravity is balanced by
radiation drag.

In figure 4 we summarize the physical quantities at
transonic points as a function of /3. The fact that r c

slowly increases and M"",c decreases with respect to
/3 is physically interpreted as follows. In the present case
where external radiation drag is caused by radiation fields
of the central luminous source, radiation drag is effective
near to the center. If /3 becomes larger, the characteristic
radius ro (14), and therefore the radially infalling region,
extends outwards, so that the sonic point moves gradu­
ally outwards. Since the angular momentum is also lost
in the outer region, M"" at the critical points decreases
as /3 increases. In these solutions the types of critical
points are always saddles.

It should be noted that there exists a restriction on
the range of /3: 0.1 ~ /3 ~ 1. For small /3 (~ 0.1), the
type of critical point becomes center and the solution
cannot pass there (see figure 2). For large /3 k 1), on
the other hand, the drag is so strong that the azimuthal
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where I\; is the electron-scattering opacity and we used
equations (1) and (28). Using the definition of parame­
ter r and inserting the numerical values, we obtain the
optical depth for the asymptotic solution far from the·
center:

. 2 [( ) -3/2 ( ) -3/2]Trad = ~_r_~Mc rin _!.- ,(34)
31 - r CS LE r g r g

which depends especially on the radius r and sound speed
Cs for r f"ooJ 1 and Mc2

f"ooJ LE . In the inner disk (r f"ooJ rin),
however, Trad is always less than unity, irrespective of the
values of the parameters. (37)

(36)

(35)

!!.- = 2V2r ~.
n 3 y-:;:

(3 = 40"T€Xe

3mp c

= 3~~ (~)-2

= 6.78 x 104r (:) -1 (;g) -2 s-1,

where r g (= 2GM/c2 ) is the Schwarzschild radius of the
central object. The non-dimensional (3 normalized by the
angular speed, n (= ..jGM / r 3 ), is then

e~4:1~ [1-Jl-(~)2]

= i~! [1- .~(R)2
c 41rR2 2 V.. - \.~) J
1 L
C 41rr2 (r » R),

where I is the specific intensity of the central object,
which is assumed to be isotropic. When the luminosity
of the central object is set to be the Eddington luminos­
ity, LE (= 41rcGMm p /O"T ), where M is the mass of the
central object, then the proportional coefficient of exter­
nal radiation drag in this case becomes

4.2.1. Accretion disks in X-ray bursters
Accretion disks which form around compact stars, such

as neutron stars and white dwarfs in close binaries, play
dominant roles there. Apart from the quiescent stage
where the disk gas is irradiated by the central object
(Fukue, Sanbuichi 1993), the intensity of radiation from
the central object is remarkably enhanced during a nu­
clear explosion on its surface. Although in nova out­
bursts the accretion disk surrounding a white dwarf may
be destroyed, in X-ray bursts only the innermost region of
the disk around a neutron star may be destroyed (Fukue
1982, 1983). An accretion disk around a neutron star as
well as its corona (Lamb 1991) is therefore subject to the
influence of radiation drag, as considered here.

Let us suppose a gaseous disk exposed to an intense
radiation field during X~ray bursts. The radiation energy
density € at a distance r from the central object with
luminosity L and radius R is expressed as

4.2. Astrophysical Applications
In several astrophysical situations, accretion disks/disk

accretion where the angular momentum is removed via
the external radiation drag may be realized. In this sub­
section we discuss accretion disks under external drag
regarding several astrophysical aspects.

(32)

(31)
(b+ l)cl\;M

Tver = I\;E = 21rGMr '

(b+ 1)1\;0.4 Mc2

Tver = 2.0 -L'
Xe

where 1\;0.4 = 1\;/0.4cm2 g-l. Thus, the optical depth
far from the center is of the order of unity (furthermore,

• 2
constant) as long as L f"ooJ M c .

On the other hand, the optical depth Trad of the present
disk in the radial direction is, for the asymptotic solution
near to the center,

Trad = I\; iT pdr
Tin

- - I\;M JGM (~r.-3/2 - ~r-3/2) (33)
- 4 2 2 3 m 3 '1rVoo Cs

where rin is the inner radius of the disk and we used
equations (1) and (7). Using the definition of Voo , we
obtain the optical depth in the radial direction as

to the present r, radiation drag removes the angular
and vertical momentum of the plasma in the disk corona
(Lamb 1989, 1991). That is, their value for the charac­
teristic radius is about 3.5 times larger than the present
value. Moreover, they concluded that the radial velocity
reaches the value fc/2 [(1- r)c/2 in the present notation]
at which the comoving luminosity equals LE and the ac­
celeration vanishes (Miller 1990). This is also different
from the present value by a factor of r. It should be

. noted that the present results are valid for general rand
are consistent with their results when r f"ooJ 1.

In order for the angular momentum of the gas to be
removed effectively via the interaction between free elec­
trons and photons, the gas should be optically thin. The
radiation of the central source penetrates the disk gas
from both the inner edge of the disk (toward the radial
direction) and the surface of the disk (toward the vertical
direction). The optical depth Tver of the present disk in
the vertical direction is, for the asymptotic solution far
from the center,



436 J. Fukue and M. Umemura [Vol. 47,

(41)

This implies that radiation drag is significant in the cen­
tral region of r;S 100rg •

4.2.2. Proto-quasars

In cosmological accretion disks, where the angular mo­
mentum is removed via the uniform cosmic background
radiation, the timescale of the drag is

5 -1( To )-4.(1+Z)-4
teas = 1.64 X 10 f1Xe 2.74K 400 yr,

(38)

where To is the present temperature of the cosmic back­
ground radiation (Fukue, Umemura 1994). Hence, at
a redshift of several hundreds the disk gas can accrete
via Compton drag momentum removal. However, once
a central active nucleus (a proto-quasar) forms, the drag
by the radiation from the central source may effectively
remove the angular momentum, even at relatively low
redshifts, via the mechanism shown in this paper, be­
cause the timescale is, from equation (36),

1
tdrag = 73

= 4.7 X 10
5 r-1 CO~@) (lO:rJ 2 yr, (39)

which is significantly less than the Hubble expansion
timescale at z < 400 for inner disk regions of r <
105rg [rv 1 pc (M/108M@)J. Furthermore, it is worth
noting that (39) is also smaller than the timescale of the
a-viscosity:

a -1 ( M )1/2
tvis = 2.4 X 10

7
(0.1) 108l\.1@

(
r ) 1/2 ( T )-1

X 105r
g

104 K yr. (40)

Thus, radiation drag may be the most dominant mech­
anism to remove angular momentum in proto-quasars,
if the central luminous sources emit the radiation with
nearly the Eddington luminosity.

4.2.3. Protoplanetary disks around a protostar
In protoplanetary disks which form around a newly

born protostar the temperature of the disk gas is so low
that the gas in the disk must be in neutral or in molecular
states. Therefore, radiation drag between free electrons
and photons does not work. However, submicron parti­
cles - dust - as well as free electrons are also subject
to the influence of radiation fields. This is well-known as
the Poynting-Robertson effect in the astrophysics of the
Solar System.

Let us consider a solid particle - dust - moving in
a circular orbit around the protostar. If the protoplan­
etary disks are optically thin to the appropriate range

ofelectromagnetic radiation, the dust particle will con­
stantly absorb photons through its isolated hemisphere
and will radiate an equal amount of energy in the form
of infrared radiation, which is emitted in all directions.
Although the incident radiation has no angular momen­
tum, the radiation emitted by the dust inherits its angu­
lar momentum. As a result, the angular momentum of
the dust is carried out. This is the Poynting-Robertson
effect (Poynting 1903; Robertson 1937).

Similar to the case of X-ray bursters, the radiative flux
f at a distance r from the center is f = LI47fr2, where
L is the luminosity of the protostar. Since the radia­
tion force (in unit mass) on the spherical particle with
mass md and radius ad is 7faJfrl(mdc), and therefore,
radiation drag is 7faafI(mdc) x (vic), the proportional
"coefficient" (3 is expressed as

(3 = 7faaf
mdc2

3L
167fadPdc2r2

-11 ( L ) ( ad )-1= 1.43 x 10 ~ 10-4 cm

(
Pd ) '-1 ( r ) -2 -1

x 2.5gcm-3 AU s,

where Pd is the density of dust particles (Robertson
1937). The corresponding timescale (a few thousand
years at 1 AU) is rather short. Hence, for the dust com­
ponent in protoplanetary disks around a protostar the
accretion process can be driven by the external radiation
drag.

5. Conclusions

In this paper we considered accretion disksIdisk ac­
cretions (the (3-disk) where the angular momentum is
removed not by the internal friction as standard a-disks
but by the external radiation drag. We assume that ex­
ternal drag is proportional to the velocity and that the
radiation field is exerted by the central luminous source.

Due to the effect of the external radiation drag, the
angular momentum of gas is removed as in the case
of the cosmological accretion disk discussed in a pre­
vious study (Fukue, Umemura 1994). In the present
case, however, since the radiation energy density is in­
versely proportional to r 2 , the angular momentum is
quickly lost inside the characteristic radius ro, which is

r 2
expressed as ro = --rg , where r is the central lu-

1-r
minosity normalized by the Eddington luminosity and
r g the Schwarzschild radius of the central object. Hence,
the nearly Keplerian rotating disk outsidero turns to the
nearly radial flow inside ro. Furthermore, in the vicinity
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of the central object the infall velocity attains the termi­

nal one voo , which is expressed as Voo = - 1;rr c, when

the effective gravity is balanced by radiation drag.
In the cold regime, where the pressure gradient force is

ignored, we found steady solutions such that the infalling
velocity Vr is expressed as Vr = -[GM(l-r)/lvoo IJlr far

1-r
from the center and as Vr = Voo = -~c near to the

center, while the rotation velocity Vcp is Keplerian far
. from the center (i.e., Vcp = JGM(l - nlr) and expo­
nentially drops near to the center (i.e., Vcp ex: e-ro / r Ir).
In the warm regime, where the effect of the gas pressure is
taken into account, we found steady transonic solutions,
such that the flow is initially accreting subsonically and
rotating Keplerian far from the center, passes a sonic
point, and eventually becomes almost radially accreting
supersonic flow with no angular momentum.

These accretion disks where the angular momentum
is removed via the external radiation drag by the cen­
tralluminous source are possible in several astrophysical
contexts, such as accretion disks around compact stars,
proto-quasars, and dusty disks around protostars.

In the present analysis we simplified several situations.
For example, we approximated the radiation energy den­
sity, assuming that the radius of the central object is suf­
ficiently small. In general, as expressed in equation (35),
there exists the dilution factor, which becomes impor-·
tant in the vicinity of the central object. Moreover, we
adopted the Newtonian formalism, while the relativistic
effect becomes important if the central object is a neu­
tron star. These boundary effects, as well as the time­
dependent behavior, should be taken into considerations
in the future.
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